[3] Bartosiewicz, Z., Kotta, Ü., Pawluszewicz, E., Wyrwas, M.: Differential rings associated with control systems on regular time scales. In: Proc. European Control Conference, Budapest 2009, pp. 242–247.
[4] Bourles, H.: 
Structural properties of discrete and continuous linear time-varying systems: a unified approach. In: Lecture Notes in Control and Inform. Sci. 311 (F. Lamnabhi-Lagarrigue et al., eds.), Springer-Verlag, London 2005, pp. 225–280. 
MR 2130107 | 
Zbl 1167.93357 
[6] Casagrande, D., Kotta, Ü., Wyrwas, M., Tõnso, M.: Transfer equivalence and reduction of nonlinear delta differential equations on homogeneous time scale. In: Proc. American Control Conference, Seattle 2008.
[8] Chyzak, F., Quadrat, A., Robertz, D.: 
OREMODULES: A symbolic package for the study of multidimensional linear systems. In: Applications of time-delay systems. Lecture Notes in Control and Inform. Sci. 352 (J. Chiasson and J.-J. Loiseau, eds.), Springer-Verlag, Berlin 2007, pp. 233–264. 
MR 2309473 | 
Zbl 1248.93006 
[10] Conte, G., Moog, C. H., Perdon, A. M.: 
Algebraic Methods for Nonlinear Control Systems. Theory and Applications. Second edition. Lecture Notes in Control and Inform. Sci., Springer, London 2007. 
MR 2305378 | 
Zbl 1130.93030 
[13] Fliess, M., Mounier, M.: 
Controllability and observability of linear delay systems: an algebraic approach. ESAIM Control, Optimization and Calculus of Variations 3, (1998), 301–314. 
DOI 10.1051/cocv:1998111 | 
MR 1644427 | 
Zbl 0908.93013 
[15] Halás, M., Kotta, Ü.: Pseudo-linear algebra: a powerful tool in unification of the study of nonlinear control systems. In: NOLCOS 2007: 7th IFAC Symposium on Nonlinear Control Systems, Pretoria 2007, pp. 684–689.
[16] Halás, M., Kotta, Ü., Li, Z., Yuan, H. Wang ,and C.: Submersive rational difference systems and formal accessibility. In: Proc. Internat. Symposium on Symbolic and Algebraic Computation, Seoul 2009.
[18] Kotta, Ü.: Irreducibility conditions for nonlinear input-output difference equations. In: Proc. 39th IEEE Conference on Decision and Control, Sydney 2000, pp. 3404–3408.
[19] Kotta, Ü.: 
Decomposition of discrete-time nonlinear control systems. Proc. Estonian Academy of Sci. Phys. Math. 54, (2005), 3, pp. 154–161. 
MR 2169162 | 
Zbl 1101.93020 
[20] Kotta, Ü., Bartosiewicz, Z., Pawluszewicz, E., Wyrwas, M.: 
Irreducibility, reduction and transfer equivalence of nonlinear input-output equations on homogeneous time scales. Systems Control Lett. 58, (2009), 646–651. 
DOI 10.1016/j.sysconle.2009.04.006 | 
MR 2554398 | 
Zbl 1184.93025 
[22] Kotta, Ü., Tõnso, M.: Irreducibility conditions for discrete-time nonlinear multi-input multi-output systems. In: Proc. 6th IFAC Symposium NOLCOS, Stuttgart 2004.
[24] McConnell, J. C., Robson, J. C.: 
Noncommutative noetherian rings. With the cooperation of L.W. Small. John Wiley & Sons, Ltd., Chichester 1987. 
MR 0934572 | 
Zbl 0644.16008 
[26] Perdon, A.-M., Moog, C. H., Conte, G.: The pole-zero structure of nonlinear control systems. In: NOLCOS 2007: 7th IFAC Symposium on Nonlinear Control Systems, Pretoria 2007, pp. 690–693.
[27] Toth, R.: Modeling and Identification of Linear Parameter-Varying Systems. PhD. thesis. Delft University of Technology 2008.
[29] Xia, X., Marques, L. A., Zagalak, P., Moog, C. H.: 
Analysis of nonlinear time-delay systems using modules over non-commutative rings. Automatica 38 (2002), 1549–1555. 
DOI 10.1016/S0005-1098(02)00051-1 | 
MR 2134034 
[30] Ylinen, R.: Application of polynomial systems theory to nonlinear systems. In: Proc. 16th IFAC World Congress, Prague 2005.