Previous |  Up |  Next


typically real functions; superdomain of local univalence; radius of local univalence; radius of starlikeness; radius of univalence
Let ${\rm T}$ be the family of all typically real functions, i.e. functions that are analytic in the unit disk $\Delta :=\{ z \in \mathbb {C} \colon |z|<1 \}$, normalized by $f(0)=f'(0)-1=0$ and such that $\mathop {\rm Im} z \mathop {\rm Im} f(z) \geq 0$ for $z \in \Delta $. In this paper we discuss the class ${\rm T}_g$ defined as \[{\rm T}_g:= \{ \sqrt {f(z)g(z)} \colon f \in {\rm T} \},\quad g \in {\rm T}.\] We determine the sets $\bigcup _{g \in {\rm T}} {\rm T}_g$ and $\bigcap _{g \in {\rm T}} {\rm T}_g$. Moreover, for a fixed $g$, we determine the superdomain of local univalence of ${\rm T}_g$, the radii of local univalence, of starlikeness and of univalence of ${\rm T}_g$.
[1] Golusin, G.: On typically real functions. Mat. Sb., Nov. Ser. 27 (1950), 201-218. MR 0039060
[2] Goodman, A. W.: Univalent Functions. Mariner Publ. Co., Tampa (1983). Zbl 1041.30501
[3] Koczan, L., Zaprawa, P.: On typically real functions with $n$-fold symmetry. Ann. Univ. Mariae Curie-Sklodowska, Sect. A, Vol. L II 2 11 (1998), 103-112. MR 1728062 | Zbl 1010.30019
[4] Rogosinski, W. W.: Über positive harmonische Entwicklungen und typischreelle Potenzreihen. Math. Z. 35 (1932), 93-121. DOI 10.1007/BF01186552 | MR 1545292
[5] Todorov, P. G.: The radii of starlikeness and convexity of order alpha of typically real functions. Ann. Acad. Sci. Fenn. Ser. A I Math. 8 (1983), 93-106. DOI 10.5186/aasfm.1983.0824 | MR 0698840
Partner of
EuDML logo