Previous |  Up |  Next


Full entry | Fulltext not available (moving wall 12 months)      Feedback
ultraparabolic equation; mixed problem; inverse problem; weak solution
We study the existence and the uniqueness of the weak solution of an inverse problem for a semilinear higher order ultraparabolic equation with Lipschitz nonlinearity. The main aim is to determine the weak solution of the equation and some functions that depend on the time variable, appearing on the right-hand side of the equation. The overdetermination conditions introduced are of integral type. In order to prove the solvability of this problem in Sobolev spaces we use the Galerkin method and the method of successive approximations.
[1] Beilina, N. V.: On solvability of an inverse problem for hyperbolic equation with an integral overdetermination condition. Fiz.-Mat. Ser. Vestn. Samar. Gos. Tehn. Univ 23 (2011), 34-39 Russian.
[2] Gajewski, H., Gröger, K., Zacharias, K.: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Mathematische Lehrbücher und Monographien, II. Abteilung, Mathematische Monographien 38 Akademie, Berlin German (1974). MR 0636412
[3] Ivanchov, M.: Inverse Problems for Equations of Parabolic Type. Mathematical Studies, Monograph Series 10 VNTL Publishers, L'viv (2003). MR 2406459 | Zbl 1147.35110
[4] Kamynin, V. L.: On the inverse problem of determining the right-hand side of a parabolic equation under an integral overdetermination condition. Math. Notes 77 (2005), 482-493 translated from Matematicheskie Zametki 77 (2005), 522-534. DOI 10.1007/s11006-005-0047-6 | MR 2178019 | Zbl 1075.35106
[5] Kolmogoroff, A.: Zufällige Bewegungen (zur Theorie der Brownschen Bewegung). Ann. Math. (2) 35 German (1934), 116-117. MR 1503147 | Zbl 0008.39906
[6] Kozhanov, A. I.: An inverse problem with an unknown coefficient and right-hand side for a parabolic equation. II. J. Inverse Ill-Posed Probl. 11 (2003), 505-522. DOI 10.1515/156939403770888246 | MR 2018675 | Zbl 1142.35626
[7] Lanconelli, E., Pascucci, A., Polidoro, S.: Linear and nonlinear ultraparabolic equations of Kolmogorov type arising in diffusion theory and in finance. Nonlinear Problems in Mathematical Physics and Related Topics II. In honour of Professor O. A. Ladyzhenskaya Int. Math. Ser. (N. Y.) 2 Kluwer Academic Publishers, New York (2002), 243-265 M. S. Birman et al. MR 1972000 | Zbl 1032.35114
[8] Lavrenyuk, S., Protsakh, N.: Boundary value problem for nonlinear ultraparabolic equation in unbounded and with respect to time variable domain. Tatra Mt. Math. Publ. 38 (2007), 131-146. MR 2428919
[9] Lavrenyuk, S. P., Protsakh, N. P.: Mixed problem for a nonlinear ultraparabolic equation that generalizes the diffusion equation with inertia. Ukr. Mat. Zh. 58 (2006), 1192-1210 Ukrainian translation in Ukr. Math. J. 58 (2006), 1347-1368. DOI 10.1007/s11253-006-0137-y | MR 2345088 | Zbl 1114.35112
[10] Protsakh, N.: Inverse problem for an ultraparabolic equation. Tatra Mt. Math. Publ. 54 (2013), 133-151. MR 3099656
[11] Safiullova, R. R.: On solvability of the linear inverse problem with unknown composite right-hand side in hyperbolic equation. Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 27 Russian (2009), 93-105. Zbl 1192.35189
Partner of
EuDML logo