Previous |  Up |  Next


global regulation; large-scale systems; output feedback; time-delay systems; uncertain nonlinear systems
This paper is concerned with the problem of global state regulation by output feedback for large-scale uncertain nonlinear systems with time delays in the states and inputs. The systems are assumed to be bounded by a more general form than a class of feedforward systems satisfying a linear growth condition in the unmeasurable states multiplying by unknown growth rates and continuous functions of the inputs or delayed inputs. Using the dynamic gain scaling technique and choosing the appropriate Lyapunov-Krasovskii functionals, we explicitly construct the universal output feedback controllers such that all the states of the closed-loop system are globally bounded and the states of large-scale uncertain systems converge to zero.
[1] Choi, H.-L., Lim, J.-T.: Stabilisation of non-linear systems with unknown growth rate by adaptive output feedback. Int. J. Systems Sci. 41 (2010), 673-678. DOI 10.1080/00207720903144529 | MR 2662736 | Zbl 1194.93178
[2] Guan, W.: Adaptive output feedback control of a class of uncertain nonlinear systems with unknown time delay. Int. J. Systems Sci. 43 (2012), 682-690. DOI 10.1080/00207721.2010.518252 | MR 2889683
[3] Hale, J. K., Lunel, S. M. V.: Introduction to Functional Differential Equations. Springer-Verlag, New York 1993. DOI 10.1007/978-1-4612-4342-7 | MR 1243878 | Zbl 0787.34002
[4] Hua, C. C., Wang, Q. G., Guan, X. P.: Memoryless state feedback controller design for time delay systems with matched uncertain nonlinearities. IEEE Trans. Automat. Control 53 (2008), 801-807. DOI 10.1109/tac.2008.917658 | MR 2401033
[5] Jankovic, M.: Control Lyapunov-Razumikhin functions and robust stabilizationof time delay systems. IEEE Trans. Automat. Control 46 (2001), 1048-1060. DOI 10.1109/9.935057 | MR 1842138
[6] Jiao, X., Shen, T. L.: Adaptive feedback control of nonlinear time-delay systems: The Lasalle-Razumikhinbased Approach. IEEE Trans. Automat. Control 50 (2005), 1909-1913. DOI 10.1109/tac.2005.854652 | MR 2182750
[7] Khalil, H. K., Saberi, A.: Adaptive stabilization of a class of nonlinear systems using high-gain feedback. IEEE Trans. Automat. Control 32 (1987), 1031-1035. DOI 10.1109/tac.1987.1104481 | MR 0909974 | Zbl 0625.93040
[8] Khalil, H. K.: Nonlinear Systems. Third edition. Prentice Hall, New Jersey 2002.
[9] Koo, M.-S., Choi, H.-L., Lim, J.-T.: Output feedback regulation of a chain of integrators with an unbounded time-varying delay in the input. IEEE Trans. Automat. Control 57 (2012), 2662-2667. DOI 10.1109/tac.2012.2190207 | MR 2991671
[10] Krishnamurthy, P., Khorrami, F.: A hign-gain scalling technique for adaptive output feedback control of feedforward systems. IEEE Trans. Automat. Control 49 (2004), 2286-2292. DOI 10.1109/tac.2004.838476 | MR 2106761
[11] Krishnamurthy, P., Khorrami, F.: Feedforward systems with iss appended dynamics: adaptive output-feedback stabilization and disturbance attenuation. IEEE Trans. Automat. Control 53 (2008), 405-412. DOI 10.1109/tac.2007.914231 | MR 2391599
[12] Lei, H., Lin, W.: Universal output feedback control of nonlinear systems with unknown growth rate. Automatica 42 (2006), 1783-1789. DOI 10.1016/j.automatica.2006.05.006 | MR 2249724
[13] Lei, H., Lin, W.: Adaptive regulation of uncertain nonlinear systems by output feedback: A universal control approach. Systems Control Lett. 56 (2007), 529-537. DOI 10.1016/j.sysconle.2007.03.002 | MR 2332005 | Zbl 1118.93026
[14] Mahmoud, M. S.: Decentralized stabilization of interconnected systems with time-varying delays. IEEE Trans. Automat. Control 54 (2009), 2663-2668. DOI 10.1109/tac.2009.2031572 | MR 2571933 | Zbl 1187.93002
[15] Praly, L., Jiang, Z. P.: Linear output feedback with dynamic hign gain for nonlinear systems. Systems Control Lett. 53 (2004), 107-116. DOI 10.1016/j.sysconle.2004.02.025 | MR 2091836
[16] Qian, C. J., Lin, W.: Output feedback control of a class of nonlinear systems: a non-separation principle paradigm. IEEE Transaction on Automatic Control 47 (2002), 1710-1715. DOI 10.1109/tac.2002.803542 | MR 1929946
[17] Sepulchre, R., Jankovie, M., V.Kokotovic, P.: Constructive Nonlinear Control. Springer-Verlag, London 1997. DOI 10.1007/978-1-4471-0967-9 | MR 1481435
[18] Shang, F., Liu, Y. G., Zhang, C. H.: Adaptive output feedback stabilization for a class of nonlinear systems with inherent nonlinearities and uncertainties. Int. J. Robust and Nonlinear Control 21 (2011), 157-176. DOI 10.1002/rnc.1583 | MR 2790231 | Zbl 1213.93178
[19] Tong, S. C., Li, Y. M., Zhang, H. G.: Adaptive Neural Network Decentralized Backstepping Output-Feedback Control for Nonlinear Large-Scale Systems With Time Delays. IEEE Trans. Neural Networks 22 (2011), 1073-1086. DOI 10.1109/tnn.2011.2146274
[20] Wu, H. S.: Decentralised adaptive robust control of uncertain large-scale non-linear dynamical systems with time-varying delays. IET Control Theory and Applications 6 (2012), 629-640. DOI 10.1049/iet-cta.2011.0015 | MR 2952986
[21] Ye, X. D.: Decentralized adaptive stabilization of large-scale nonlinear timedelay systems with unknown high-frequency-gain signs. IEEE Trans. Automat. Control 56 (2011), 1473-1478. DOI 10.1109/tac.2011.2132270 | MR 2839246
[22] Zhang, X. F., Gao, H. Y., Zhang, C. H.: Global asymptotic stabilization of feedforward nonlinear systems with a delay in the input. Int. J. Systems Sci. 37 (2006), 141-148. DOI 10.1080/00207720600566248 | MR 2221459 | Zbl 1120.93048
[23] Zhang, X. F., Baron, L., Liu, Q. G., Boukas, E.-K.: Design of stabilizing controllers with a dynamic gain for feedforward nonlinear time-delay systems. IEEE Trans. Automat. Control 56 (2011), 692-697. DOI 10.1109/tac.2010.2097150 | MR 2807647
[24] Zhang, X. F., Zhang, C. H., Wang, Y. Z.: Decentralized output feedback stabilization for a class of large-scale feedforward nonlinear time-delay systems. Int. J. Robust and Nonlinear Control 24 (2013), 17, 2628-2639. DOI 10.1002/rnc.3013 | MR 3272991 | Zbl 1305.93173
[25] Zhang, X. F., Liu, L., Feng, G., Zhang, C. H.: Output feedback control of large-scale nonlinear time-delay systems in lower triangular form. Automatica 49 (2013), 3476-3483. DOI 10.1016/j.automatica.2013.08.026 | MR 3115821 | Zbl 1315.93011
[26] Zhang, X., Lin, Y.: Global adaptive stabilisation of feedforward systems by smooth output feedback. IET Control Theory Appl. 6 (2012), 2134-2141. DOI 10.1049/iet-cta.2011.0501 | MR 3058455
Partner of
EuDML logo