Previous |  Up |  Next


MSC: 47B35, 81S99
Toeplitz quantization; non-commutating symbols; creation and annihilation operators; canonical commutation relations; anti-Wick quantization; second quantization of a quantum group
Toeplitz quantization is defined in a general setting in which the symbols are the elements of a possibly non-commutative algebra with a conjugation and a possibly degenerate inner product. We show that the quantum group $SU_q(2)$ is such an algebra. Unlike many quantization schemes, this Toeplitz quantization does not require a measure. The theory is based on the mathematical structures defined and studied in several recent papers of the author; those papers dealt with some specific examples of this new Toeplitz quantization. Annihilation and creation operators are defined as densely defined Toeplitz operators acting in a quantum Hilbert space, and their commutation relations are discussed. At this point Planck's constant is introduced into the theory. Due to the possibility of non-commuting symbols, there are now two definitions for anti-Wick quantization; these two definitions are equivalent in the commutative case. The Toeplitz quantization introduced here satisfies one of these definitions, but not necessarily the other. This theory should be considered as a second quantization, since it quantizes non-commutative (that is, already quantum) objects. The quantization theory presented here has two essential features of a physically useful quantization: Planck's constant and a Hilbert space where natural, densely defined operators act.
[1] Ali, S.T., Englis, M.: Berezin-Toeplitz quantization over matrix domains. Contributions in Mathematical Physics: A Tribute to Gerard G. Emch, Eds. S.T. Ali and K.B. Sinha, 2007, -, Hindustan Book Agency, New Delhi, India, arXiv: math-ph/0602015. MR 2423653
[2] Ali, S.T., Englis, M.: Matrix-valued Berezin-Toeplitz quantization. J. Math. Phys., 48, 5, 2007, 053504, (14 pages). arXiv: math-ph/0611082. MR 2329866 | Zbl 1144.81305
[3] Bargmann, V.: On a Hilbert space of analytic functions and its associated integral transform, Part I. Commun. Pure Appl. Math., 14, 3, 1961, 187-214, DOI 10.1002/cpa.3160140303 | MR 0157250
[4] Baz, M. El, Fresneda, R., Gazeau, J.-P., Hassouni, Y.: Coherent state quantization of paragrassmann algebras. J. Phys. A: Math. Theor., 43, 38, 2010, 385202 (15pp). Also see the Erratum for this article in arXiv:1004.4706v3. MR 2718322 | Zbl 1198.81124
[5] Berezin, F.A.: General Concept of Quantization. Commun. Math. Phys., 40, 1975, 153-174, Springer, DOI 10.1007/BF01609397 | MR 0411452 | Zbl 1272.53082
[6] Berger, C.A., Coburn, L.A.: Toeplitz operators and quantum mechanics. J. Funct. Anal., 68, 1986, 273-299, DOI 10.1016/0022-1236(86)90099-6 | MR 0859136 | Zbl 0629.47022
[7] Berger, C.A., Coburn, L.A.: Toeplitz operators on the Segal-Bargmann space. Trans. Am. Math. Soc., 301, 1987, 813-829, DOI 10.1090/S0002-9947-1987-0882716-4 | MR 0882716 | Zbl 0625.47019
[8] Borthwick, D., Klimek, S., Lesniewski, A., Rinaldi, M.: Matrix Cartan superdomains, super Toeplitz operators, and quantization. J. Funct. Anal., 127, 1995, 456-510, arXiv: hep-th/9406050. DOI 10.1006/jfan.1995.1020 | MR 1317726 | Zbl 0834.58008
[9] Silbermann, A. Böttcher and B.: Analysis of Toeplitz Operators. 2006, Springer, MR 2223704
[10] Gazeau, J.-P.: Coherent States in Quantum Physics. 2009, Wiley-VCH,
[11] Hall, B.C.: Holomorphic methods in analysis and mathematical physics, First Summer School in Analysis and Mathematical Physics, Eds. S. Pérez-Esteva and C. Villegas-Blas. Contemp. Math., 260, 2000, 1-59, Am. Math. Soc., DOI 10.1090/conm/260/04156 | MR 1770752
[12] Iuliu-Lazaroiu, C., McNamee, D., Sämann, C.: Generalized Berezin-Toeplitz quantization of Kähler supermanifolds. J. High Energy Phys., 2009, 05, 2009, 055, arXiv: 0811.4743v2. DOI 10.1088/1126-6708/2009/05/055 | MR 2511387
[13] Karlovich, A. Yu.: Higher order asymptotic formulas for Toeplitz matrices with symbols in generalized Hölder spaces. Operator Algebras, Operator Theory and Applications, Eds. Maria Amélia Bastos et al, 2008, 207-228, Birkhäuser, arXiv: 0705.0432. MR 2681889 | Zbl 1157.47022
[14] Karlovich, A. Yu.: Asymptotics of Toeplitz Matrices with Symbols in Some Generalized Krein Algebras. Modern Anal. Appl, 2009, 341-359, Springer, arXiv: 0803.3767. MR 2568640 | Zbl 1198.47045
[15] Kerr, R.: Products of Toeplitz Operators on a Vector Valued Bergman Space. Integral Equations Operator Theory, 66, 3, 2010, 571-584, arXiv:0804.4234. DOI 10.1007/s00020-010-1756-0 | MR 2601569 | Zbl 1218.47047
[16] Lieb, E.H.: The classical limit of quantum spin systems. Commun. Math. Phys., 31, 4, 1973, 327-340, DOI 10.1007/BF01646493 | MR 0349181 | Zbl 1125.82305
[17] Manin, Yu.I.: Topics in Noncommutative Geometry. 1991, Princeton University Press, MR 1095783 | Zbl 0724.17007
[18] Martínez-Avendaño, R.A., Rosenthal, P.: An Introduction to Operators on the Hardy-Hilbert space. 2007, Springer, MR 2270722 | Zbl 1116.47001
[19] Reed, M., Simon, B.: Mathematical Methods of Modern Physics, Vol. I: Functional Analysis. 1972, Academic Press,
[20] Reed, M., Simon, B.: Mathematical Methods of Modern Physics, Vol. II: Fourier Analysis, Self-Adjointness. 1975, Academic Press, MR 0493420
[21] Sontz, S.B.: A Reproducing Kernel and Toeplitz Operators in the Quantum Plane. Communications in Mathematics, 21, 2, 2013, 137-160, arXiv:1305.6986. MR 3159286 | Zbl 1297.46023
[22] Sontz, S.B.: Paragrassmann Algebras as Quantum Spaces, Part I: Reproducing Kernels. Geometric Methods in Physics. XXXI Workshop 2012. Trends in Mathematics, Eds. P. Kielanowski et al., 2013, 47-63, Birkhäuser, arXiv:1204.1033v3. MR 3363992
[23] Sontz, S.B.: Toeplitz Quantization without Measure or Inner Product. Geometric Methods in Physics. XXXII Workshop 2013. Trends in Mathematics, 2014, 57-66, \unskip , arXiv:1312.0588. Zbl 1326.47030
[24] Sontz, S.B.: Paragrassmann Algebras as Quantum Spaces, Part II: Toeplitz Operators. Journal of Operator Theory, 71, 2014, 411-426, arXiv:1205.5493, doi: DOI 10.7900/jot.2012may24.1969 | MR 3214644
[25] Timmermann, T.: An invitation to quantum groups and duality: From Hopf algebras to multiplicative unitaries and beyond. 2008, Euro. Math. Soc., MR 2397671 | Zbl 1162.46001
Partner of
EuDML logo