[1] ARHANGEL'SKII A. V.:
Stroenie i klassifikatsiya topologicheskikh prostranstv i kardinal'nye invarianty. Uspekhi matem. nauk 33, 6 (1978), 29-84.
MR 0526012
[2l ARHANGEL'SKII A. V.:
O sootnosheniyakh mezhdu invariantami topologiches- kikh grupp i ikh podprostranstv. Uspekhi matem. nauk 35, 3 (1980), 3-22.
MR 0580615
[3] ARHANGEL'SKII A. V.:
Spektr chastot topologicheskogo prostranstva i operatsiya proizvedeniya. Trudy Mosk. matem. ob-va 40 (1979), 171-208.
MR 0550259
[4] ARHANGEL'SKII A. V.:
Klassy topologicheskikh grupp. Uspekhi matem. nauk 36, 3 (1981), 127-146.
MR 0580615
[5] ARHANGEL'SKII A. V.: Prostranstva funktsii i usloviya tipa polnoty. Vestnik Mosk. gos. un-ta, ser. I, matem., mekhan., 6 (1983), 4-9
[6] ARHANGEL'SKII A. V.: Nekotorye novye napravleniya v teorii nepreryvnykh otobrazhenij. v sbornike: Nepreryvnye funktsii na topologicheskikh prostranstvakh, Riga, LGU, 1986, 5-35.
[7] ARHANGEL'SKII A. V., OKUNEV O. G.: Kharakterizatsiya svoistv prostranstv svolstvami ikh nepreryvnykh obrazov. Vestnik Mosk. gos. un-ta, ser. I, matem., mekh., 5 (1985).
[8] ARHANGEL'SKII A. V., PONOMAREV V. I.: Osnovy obshchei topologii v zadachakh i uprazhneniyakh. Moskva, 1974.
[9] ARHANGEL'SKII A. V., SHAKHMATOV D. B.: To appear in Trudy Mosk. mat. obshch., or in Trudy mat. sem. Petrovskogo, Moskva.
Zbl 1023.54002
[10] ASANOV M. O.: O kardinal'nykh invariantakh prostranstv nepreryvnykh funktsij. V sbornike: Sovremennaya topologiya i teoriya mnozhestv 2 (1979), 8-12, Izhevsk.
[11] VELICHKO N. V.: O slaboi topologii prostranstv nepreryvnykh funktsij. Matem. zametki 30 (1981), 703-712.
[12] MALYKHIN V. I.: Nesokhranenie svojstv topologicheskikh grupp pri vozvedenii iz v kvadrat. Sibirskií matem, zhurnal, 28, 4 (1987), 154-161.
[13] USPENSKIĬ V. V.: O nepreryvnykh obrazakh lindelefovykh topologicheskikh grupp. Doklady AN SSSR 285, 4 (1985), 824-827.
[14] ARHANGEL'SKI I A. V.: On relationship between topological properties of X and $C_p (X)$. Proc. Fifth Prague Topol. Symp., 1981, Heldermann Verlag, Berlin, 1982, pp. 24-36.
[15] ARHANGEL'SKII A. V.:
A survey of $C_p$ -theory. Questions and Answers in General Topology, 5 (1987), 1-109.
MR 0909494
[16] ARHANGEL'SKII A. V.: Some results and problem in $C_p$ -theory. Proc. Sixth Prague Topol. Symp., 1986, Heldermann Verlag Berlin, 1988, U-31.
[17] ARHANGEL'SKII A. V., USPENSKIĬ V. V.:
On the cardinality of Lindelof subspaces of function spaces. Comment. Math. Univ. Carolinae 27 (1986), 673-676.
MR 0874660
[18] BALOGH Z.:
On compact Hausdorff spaces of countable tightness. (1987), preprint.
MR 0930252
[19] COMFORT W. W.:
Topological groups. In: Handbook of set-theoretic topology. North-Holland, Amsterdam - New York - Oxford 1984.
MR 0776643
[20] DOW A.: Removing large cardinals from the Moore-Mrowka solution. (1988), preprint.
[22] JUHÁSZ I.:
Cardinal functions in topology. Amsterdam, Mathematisch Centrum 1971.
MR 0340021
[23] MARCISZEWSKI W.:
A pre-Hilbert space without any continuous map onto its own square. Bull. Acad. Pol. Sci. Ser. Math., Astr. et Phys., 31 (1983), 393-397.
MR 0756920 |
Zbl 0548.46003
[25] POL R.:
Concerning function spaces on separable compact spaces. Bul. Acad. Pol. Sci. Ser. Math., Astr. et Phys. 25 (1977), 993-997.
MR 0461429 |
Zbl 0389.54009
[26] PRZYMUSIŃSKI T.:
Normality and paracompactness in finite and countable Cartesian products. Fund. Math. 105 (1980), 87-104.
MR 0561584
[27] TODORČEVIĆ S.:
Forcing positive partition relations. Trans. Amer. Math. Soc. 280 (1983), 703-720.
MR 0716846
[28] WATSON W. S.:
Pseudocompact metacompact spaces are compact. Proc. Amer. Math. Soc. 81 (1981), 151-152.
MR 0589159 |
Zbl 0468.54014