Previous |  Up |  Next

Article

Keywords:
cliquish function; quasicontinuous functions
Summary:
It is proved that every real cliquish function defined on a separable metrizable space is the sum of three quasicontinuous functions.
References:
[1] Doboš J., Šalát T.: Cliquish functions, Riemann integrable functions and quasi-uniform convergence. Acta Math. Univ. Comen. 40-41 (1982), 219-223. MR 0686978 | Zbl 0518.26005
[2] Grande Z.: Sur les fonctions cliquish. Časopis pěst. mat. 110 (1985), 225-236. MR 0808073 | Zbl 0579.54009
[3] Ҝelley J. L.: Geneгal Topology. New York, 1955.
[4] Lipinski J.S., Šalát T.: On the points of quasicontinuity and cliquishness of functions. Czechoslovak Math. J. 21 (1971), 484-489. MR 0287517 | Zbl 0219.26004
[5] Stronska E.: L'espace linéaire des fonctions cliquées sur $R^n$ est généré par les fonctions quasi-continues. Math. Slovaca 39 (1989), 155-164. MR 1018257
[6] Stronska E.: On the group generated by quasicontinuous functions. Real Analysis Exchange 17 (1991-92), 579-589. DOI 10.2307/44153751 | MR 1171399
Partner of
EuDML logo