[1] J. J. Benedetto, M. W. Frazier:
Wavelets: Mathematics and Applications. Studies in Advanced Mathematics. CRC Press, Boca Raton, 1994.
MR 1247511
[2] A. Cohen:
Wavelet Methods in Numerical Analysis. Handbook of Numerical Analysis, Vol. VII, P. G. Ciarlet et al. (eds.), North-Holland/Elsevier, Amsterdam, 2000, pp. 417–711.
MR 1804747 |
Zbl 0976.65124
[5] V. Finěk:
Daubechies wavelets and two-point boundary value problems. Appl. Math. 49 (2004), 465–481.
MR 2086089
[7] G. Hanwei, Y. Jiaxian, H. Jianguo, and L. Peiguo: The Numerical Integral Algorithm Based on Multiresolution Analysis. Preprint (Wavelet Digest), Department of Electronic Technique, NUDT, Changsha, 2001.
[8] A. K. Louis, P. Maaß, and A. Rieder:
Wavelets. Theorie und Anwendungen. Teubner, Stuttgart, 1994.
MR 1371382
[9] Y. Meyer:
Ondelettes et Opérateurs I: Ondelettes. Hermann Press, Paris, 1990; English translation: Wavelets and Operators. Cambridge University Press, Cambridge, 1992.
MR 1085487 |
Zbl 0694.41037
[10] W.-Ch. Shann, J.-Ch. Yan: Quadratures involving polynomials and Daubechies’ wavelets. Preprint, National Central University, Chung-Li, R.O.C., April 1994.
[11] W. Sweldens, R. Piessens:
Quadrature formulae and asymptotic error expansions for wavelet approximations of smooth functions. SIAM J. Numer. Anal. 31 (1994), 1240–1264.
DOI 10.1137/0731065 |
MR 1286226
[12] P. Wojtaszczyk:
A Mathematical Introduction to Wavelets. Cambridge University Press, Cambridge, 1997.
MR 1436437 |
Zbl 0865.42026