Previous |  Up |  Next

Article

Keywords:
magnetic field with permanent magnets; variational formulation; two-sided unique existence condition; finite element method
Summary:
Mathematical treatment of a planar magnetic field excited by permanent magnets is presented. A special two-sided condition for differential magnetic reluctivity is introduced to prove the unique existence of both the weak and the approximate solutions and also a certain error estimate. Notes to numerical algorithm and practical applications are given.
References:
[1] P.  Adamec, A.  Delong, and B.  Lencová: Miniature magnetic electron lenses with permanent magnets. J.  Micr. 179 (1995), 129–132. DOI 10.1111/j.1365-2818.1995.tb03622.x
[2] C. C.  Chan, K. T.  Chau, J. Z.  Jiang, W.  Xia, M.  Zhu, and R. Zhang: Novel permanent magnet motor drives for electric vehicles. IEEE Trans. Ind. Electron 43 (1996), 331–339. DOI 10.1109/41.491357
[3] C. C.  Chan, J. Z.  Jiang, W.  Xia, and K. T.  Chau: Novel wide range speed control of permanent magnet brushless motor drives. IEEE Trans. Power Electron 10 (1995), 539–546. DOI 10.1109/63.406841
[4] M.  Enokizono, K.  Matsumura: Magnetic field analysis of a permanent magnet motor by finite element method. JSAEM 3, Applied Electromagnetics in Materials (1995), 349–356.
[5] M. V.  Ferreira da Luz, P.  Dular, N.  Sadowski, Ch.  Geuzaine, and J. P. A.  Bastos: Analysis of a permanent magnet generator with dual formulations using periodicity conditions and moving band. IEEE Trans. Magn. 38 (2002), 961–964. DOI 10.1109/20.996247
[6] J. Y.  Gan, K. T.  Chau, Y.  Wang, C. C.  Chan, and D. J. Z.  Jiang: Design and analysis of a new permanent magnet brushless DC Machine. IEEE Trans. Magn. 36 (2000), 3353–3356. DOI 10.1109/20.908798
[7] W.  Kamminga: Finite-element solutions for devices with permanent magnets. J.  Phys.  D: Appl. Phys. 8 (1975), 841–855. DOI 10.1088/0022-3727/8/7/017
[8] Y.  Kawase, T.  Ota, and H.  Fukunaga: 3-D eddy current analysis in permanent magnet of interior permanent magnet motors. IEEE Trans. Magn. 36 (2000), 1863–1866. DOI 10.1109/20.877808
[9] Y.  Kawase, T.  Yamaguchi, and Y.  Hayashi: Analysis of cogging torque of permanent magnet motor by 3-D finite element method. IEEE Trans. Magn. 31 (1995), 2044–2047. DOI 10.1109/20.376445
[10] M.  Kos, F.  Melkes, and M.  Stolařík: Numerical computation of magnetic fields of synchronous machines with permanent magnets. In: TES 1982. (1982), VUES Brno, theoretical number, 43–52. (Czech)
[11] M. V. F.  da Luz, P.  Dular, N.  Sadowski, Ch.  Geuzaine, and J. P. A.  Bastos: Analysis of a permanent magnet generator with dual formulations using periodicity conditions and moving band. IEEE Trans. Magn. 38 (2002), 961–964. DOI 10.1109/20.996247
[12] F.  Melkes: Mathematical treatment of planar magnetic fields with permanent magnets. Interdisciplinary Applied Electromagnetics, CSAEM, Brno, 1996, pp. 69–76.
[13] F.  Melkes: Rod permanent magnet in an external magnetic field. Acta Technica ČSAV (1990), 146–155.
[14] F.  Melkes, A.  Ženíšek: On a certain two-sided symmetric condition in magnetic field analysis and computations. Appl. Math 42 (1997), 147–159. DOI 10.1023/A:1022295111737 | MR 1430406
[15] J.  Polák: Variational Principles and Methods of Electromagnetic Field Theory. Academia, Prague, 1988. (Czech)
[16] H.  Polinder, M. J.  Hoeijmakers: Eddy-current losses in the segmented surface-mounted magnets of a PM  machine. IEE Proc. Electr. Power Appl. 146 (1999), 261–266. DOI 10.1049/ip-epa:19990091
[17] Y.  Wang, K. T.  Chau, C. C.  Chan, and J. Z.  Jiang: Transient analysis of a new outer-rotor permanent-magnet brushless DC  drive using circuit-field-torque coupled time-stepping finite-element method. IEEE Trans. Magn. 38 (2002), 1297–1300. DOI 10.1109/20.996331
Partner of
EuDML logo