[1] CHOVANEC F.-KOPKA F.: 
Difference posets in the quantum structure background. Internat. J. Theoret. Phуs. 39 (2000), 571 583. 
MR 1790895[2] CIGNOLI R.-D'OTTAVIANO I. M. I.-MUNDICI D.: 
Algebraic Foundations of Many-Valued Reasoning. Kluwer Academic Publishers, Dordrecht, 2000. 
MR 1786097 | 
Zbl 0937.06009[3] CONRAD P.: 
The structure of a lattice-ordered group with a finite number of disjoint elements. Michigan Math. J. 7 (1960), 171-180. 
MR 0116059 | 
Zbl 0103.01501[4] DVUREČENSKIJ A.: 
Pseudo $MV$-algebras are intervals in $\ell$-groups. J. Aust. Math. Soc. 72 (2002), 427-445. 
MR 1902211 | 
Zbl 1027.06014[5] FOULIS D.-BENNET M. K.: 
Effect algebras and unsharp quantum logics. Found Phуs. 24 (1994), 1331 1352. 
MR 1304942 | 
Zbl 1213.06004[6] FRIČ R.: 
Coproducts of D-posets and their application to probability. Internat. J. Theoret. Phуs. 43 (2004), 1625-1633. 
MR 2108299 | 
Zbl 1070.81009[7] GEORGESCU G.-IORGULESCU A.: 
Pseudo MV-algebras: a noncommutative extension of MV-algebras. In: Information technology. Proceedings of the 4th International Sуmposium on Economic Informatics Held in Bucharest, Romania, Maу 6-9, 1999. (1. Smeureanu et al., eds.), Editura Inforec, Bucharest, 1999, pp. 961-968. 
MR 1730100 | 
Zbl 0985.06007[9] HARMINC M.: 
Sequential convergences in lattice ordered groups. Czechoslovak Math. J. 39 (1989), 232-238. 
MR 0992130[10] JAKUBÍK J.: 
Lattice ordered groups having a largest convergence. Czechoslovak Math. J. 39 (1989), 717-729. 
MR 1018008 | 
Zbl 0713.06009[11] JAKUBÍK J.: 
Sequential convergences on MV-algebras. Czechoslovak Math. J. 45 (1995), 709-726. 
MR 1354928 | 
Zbl 0845.06009[12] JAKUBÍK J.: 
Convergences on lattice ordered groups with a finite number of disjoint elements. Math. Slovaca 56 (2006), 289-299. 
MR 2250080 | 
Zbl 1141.06016[13] RACHŮNEK J.: 
A noncommutative generalization of MV-algebras. Czechoslovak Math. J. 25 (2002), 255-273. 
MR 1905434