Previous |  Up |  Next

Article

Keywords:
affine connection; affine Killing vector field; homogeneous manifold; homogeneous geodesic
Summary:
For studying homogeneous geodesics in Riemannian and pseudo-Riemannian geometry (on reductive homogeneous spaces) there is a simple algebraic formula which works, at least potentially, in every given case. In the affine differential geometry, there is not such a universal formula. In the previous work, we proposed a simple method of investigation of homogeneous geodesics in homogeneous affine manifolds in dimension 2. In the present paper, we use this method on certain classes of homogeneous connections on the examples of 3-dimensional Lie groups.
References:
[1] Alexandroff, P. S., Hopf, H.: Topologie, Band I. Springer, 1935.
[2] Alekseevsky, D., Arvanitoyeorgos, A.: Riemannian flag manifolds with homogeneous geodesics. Trans. Am. Math. Soc. 359, 8 (2007), 3769–3789 (electronic). DOI 10.1090/S0002-9947-07-04277-8 | MR 2302514 | Zbl 1148.53038
[3] Arias-Marco, T., Kowalski, O.: Classification of locally homogeneous affine connections with arbitrary torsion on 2-dimensional manifolds. Monaths. Math. 153 (2008), 1–18. DOI 10.1007/s00605-007-0494-0 | MR 2366132 | Zbl 1155.53009
[4] Calvaruso, G., Kowalski, O., Marinosci, R.A.: Homogeneous geodesics in solvable Lie groups. Acta Math. Hungarica 101, 4 (2003), 313–322. DOI 10.1023/B:AMHU.0000004942.87374.0e | MR 2017938 | Zbl 1057.53041
[5] Calvaruso, G., Marinosci, R. A.: Homogeneous geodesics of three-dimensional unimodular Lorentzian Lie groups. Mediterr. J. Math. 3 (2006), 467–481. DOI 10.1007/s00009-006-0091-9 | MR 2274738 | Zbl 1150.53010
[6] Dušek, Z.: The existence of homogeneous geodesics in homogeneous affine manifolds. J. Geom. Phys. 60 (2010), 687–689. DOI 10.1016/j.geomphys.2009.12.015 | MR 2608520
[7] Dušek, Z., Kowalski, O.: Geodesic graphs on the 13-dimensional group of Heisenberg type. Math. Nachr. 254-255 (2003), 87–96. MR 1983957 | Zbl 1019.22004
[8] Dušek, Z., Kowalski, O.: Light-like homogeneous geodesics and the Geodesic Lemma for any signature. Publ. Math. Debrecen 71, 1-2 (2007), 245–252. MR 2340046 | Zbl 1135.53316
[9] Dušek, Z., Kowalski, O.: On six-dimensional pseudo-Riemannian almost g.o. spaces. Journal of Geometry and Physics 57 (2007), 2014–2023. DOI 10.1016/j.geomphys.2007.04.005 | MR 2348276 | Zbl 1126.53026
[10] Dušek, Z., Kowalski, O., Nikčević, S. Ž.: New examples of Riemannian g.o. manifolds in dimension 7. Differential Geom. Appl. 21 (2004), 65–78. DOI 10.1016/j.difgeo.2004.03.006 | MR 2067459 | Zbl 1050.22011
[11] Dušek, Z., Kowalski, O., Vlášek, Z.: Homogeneous geodesics in homogeneous affine manifolds. Result. Math. 54 (2009), 273–288. DOI 10.1007/s00025-009-0373-1 | MR 2534447 | Zbl 1184.53048
[12] Figueroa-O’Farrill, J., Meessen, P., Philip, S.: Homogeneity and plane-wave limits. J. High Energy Physics 05 (2005), 050–050. DOI 10.1088/1126-6708/2005/05/050 | MR 2155055
[13] Kobayashi, S., Nomizu, N.: Foundations of differential geometry I, II. Wiley Classics Library, 1996.
[14] Kowalski, O., Nikčević, S.Ž.: On geodesic graphs of Riemannian g.o. spaces. Archiv der Math. 73 (1999), 223–234; Appendix: Archiv der Math. 79 (2002), 158–160. DOI 10.1007/s000130050032 | MR 1705019
[15] Kowalski, O., Nikčević, S.Ž., Vlášek, Z.: Homogeneous geodesics in homogeneous Riemannian manifolds – Examples. Geometry and Topology of Submanifolds, World Sci. Publishing co., River Edge, NJ (2000), 104–112. MR 1801906
[16] Kowalski, O., Opozda, B., Vlášek, Z.: On locally nonhomogeneous pseudo-Riemannian manifolds with locally homogeneous Levi-Civita connections. International J.Math. 14, 6 (2003), 1–14. DOI 10.1142/S0129167X03001971 | MR 1993797 | Zbl 1061.53049
[17] Kowalski, O., Opozda, B., Vlášek, Z.: A classification of locally homogenous connections on 2-dimensional manifolds via group-theoretical approach. Central European J. Math. 2, 1 (2004), 87–102. DOI 10.2478/BF02475953 | MR 2041671
[18] Kowalski, O., Szenthe, J.: On the existence of homogeneous geodesics in homogeneous Riemannian manifolds. Geom. Dedicata 81 (2000), 209–214; Erratum: Geom. Dedicata 84 (2001), 331–332. DOI 10.1023/A:1005287907806 | MR 1772203 | Zbl 0980.53061
[19] Kowalski, O., Vanhecke, L.: Riemannian manifolds with homogeneous geodesics. Boll. Un. Math. Ital. 5, B(7) (1991), 189–246. MR 1110676 | Zbl 0731.53046
[20] Kowalski, O., Vlášek, Z.: Homogeneous Riemannian manifolds with only one homogeneous geodesic. Publ. Math. Debrecen 62, 3-4 (2003), 437–446. MR 2008107 | Zbl 1060.53043
[21] Kowalski, O., Vlášek, Z.: On the moduli space of locally homogeneous affine connections in plane domains. Comment. Math. Univ. Carolinae 44, 2 (2003), 229–234. MR 2026160
[22] Marinosci, R.A.: Homogeneous geodesics in a three-dimensional Lie group. Comm. Math. Univ. Carolinae 43, 2 (2002), 261–270. MR 1922126 | Zbl 1090.53038
[23] Opozda, B.: A classification of locally homogeneous connections on 2-dimensional manifolds. Differential Geometry and its Applications 21, 2 (2004), 173–198. MR 2073824 | Zbl 1063.53024
[24] Philip, S.: Penrose limits of homogeneous spaces. J. Geom. Phys. 56 (2006), 1516–1533. DOI 10.1016/j.geomphys.2005.08.002 | MR 2240408 | Zbl 1104.83020
Partner of
EuDML logo