Previous |  Up |  Next

Article

Title: Homogeneous Geodesics in 3-dimensional Homogeneous Affine Manifolds (English)
Author: Dušek, Zdeněk
Author: Kowalski, Oldřich
Author: Vlášek, Zdeněk
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 50
Issue: 1
Year: 2011
Pages: 29-42
Summary lang: English
.
Category: math
.
Summary: For studying homogeneous geodesics in Riemannian and pseudo-Riemannian geometry (on reductive homogeneous spaces) there is a simple algebraic formula which works, at least potentially, in every given case. In the affine differential geometry, there is not such a universal formula. In the previous work, we proposed a simple method of investigation of homogeneous geodesics in homogeneous affine manifolds in dimension 2. In the present paper, we use this method on certain classes of homogeneous connections on the examples of 3-dimensional Lie groups. (English)
Keyword: affine connection
Keyword: affine Killing vector field
Keyword: homogeneous manifold
Keyword: homogeneous geodesic
MSC: 53B05
MSC: 53C30
idZBL: Zbl 1244.53057
idMR: MR2920697
.
Date available: 2011-12-08T09:46:19Z
Last updated: 2013-09-18
Stable URL: http://hdl.handle.net/10338.dmlcz/141718
.
Reference: [1] Alexandroff, P. S., Hopf, H.: Topologie, Band I. Springer, 1935.
Reference: [2] Alekseevsky, D., Arvanitoyeorgos, A.: Riemannian flag manifolds with homogeneous geodesics. Trans. Am. Math. Soc. 359, 8 (2007), 3769–3789 (electronic). Zbl 1148.53038, MR 2302514, 10.1090/S0002-9947-07-04277-8
Reference: [3] Arias-Marco, T., Kowalski, O.: Classification of locally homogeneous affine connections with arbitrary torsion on 2-dimensional manifolds. Monaths. Math. 153 (2008), 1–18. Zbl 1155.53009, MR 2366132, 10.1007/s00605-007-0494-0
Reference: [4] Calvaruso, G., Kowalski, O., Marinosci, R.A.: Homogeneous geodesics in solvable Lie groups. Acta Math. Hungarica 101, 4 (2003), 313–322. Zbl 1057.53041, MR 2017938, 10.1023/B:AMHU.0000004942.87374.0e
Reference: [5] Calvaruso, G., Marinosci, R. A.: Homogeneous geodesics of three-dimensional unimodular Lorentzian Lie groups. Mediterr. J. Math. 3 (2006), 467–481. Zbl 1150.53010, MR 2274738, 10.1007/s00009-006-0091-9
Reference: [6] Dušek, Z.: The existence of homogeneous geodesics in homogeneous affine manifolds. J. Geom. Phys. 60 (2010), 687–689. MR 2608520, 10.1016/j.geomphys.2009.12.015
Reference: [7] Dušek, Z., Kowalski, O.: Geodesic graphs on the 13-dimensional group of Heisenberg type. Math. Nachr. 254-255 (2003), 87–96. Zbl 1019.22004, MR 1983957
Reference: [8] Dušek, Z., Kowalski, O.: Light-like homogeneous geodesics and the Geodesic Lemma for any signature. Publ. Math. Debrecen 71, 1-2 (2007), 245–252. Zbl 1135.53316, MR 2340046
Reference: [9] Dušek, Z., Kowalski, O.: On six-dimensional pseudo-Riemannian almost g.o. spaces. Journal of Geometry and Physics 57 (2007), 2014–2023. Zbl 1126.53026, MR 2348276, 10.1016/j.geomphys.2007.04.005
Reference: [10] Dušek, Z., Kowalski, O., Nikčević, S. Ž.: New examples of Riemannian g.o. manifolds in dimension 7. Differential Geom. Appl. 21 (2004), 65–78. Zbl 1050.22011, MR 2067459, 10.1016/j.difgeo.2004.03.006
Reference: [11] Dušek, Z., Kowalski, O., Vlášek, Z.: Homogeneous geodesics in homogeneous affine manifolds. Result. Math. 54 (2009), 273–288. Zbl 1184.53048, MR 2534447, 10.1007/s00025-009-0373-1
Reference: [12] Figueroa-O’Farrill, J., Meessen, P., Philip, S.: Homogeneity and plane-wave limits. J. High Energy Physics 05 (2005), 050–050. MR 2155055, 10.1088/1126-6708/2005/05/050
Reference: [13] Kobayashi, S., Nomizu, N.: Foundations of differential geometry I, II. Wiley Classics Library, 1996.
Reference: [14] Kowalski, O., Nikčević, S.Ž.: On geodesic graphs of Riemannian g.o. spaces. Archiv der Math. 73 (1999), 223–234; Appendix: Archiv der Math. 79 (2002), 158–160. MR 1705019, 10.1007/s000130050032
Reference: [15] Kowalski, O., Nikčević, S.Ž., Vlášek, Z.: Homogeneous geodesics in homogeneous Riemannian manifolds – Examples. Geometry and Topology of Submanifolds, World Sci. Publishing co., River Edge, NJ (2000), 104–112. MR 1801906
Reference: [16] Kowalski, O., Opozda, B., Vlášek, Z.: On locally nonhomogeneous pseudo-Riemannian manifolds with locally homogeneous Levi-Civita connections. International J.Math. 14, 6 (2003), 1–14. Zbl 1061.53049, MR 1993797, 10.1142/S0129167X03001971
Reference: [17] Kowalski, O., Opozda, B., Vlášek, Z.: A classification of locally homogenous connections on 2-dimensional manifolds via group-theoretical approach. Central European J. Math. 2, 1 (2004), 87–102. MR 2041671, 10.2478/BF02475953
Reference: [18] Kowalski, O., Szenthe, J.: On the existence of homogeneous geodesics in homogeneous Riemannian manifolds. Geom. Dedicata 81 (2000), 209–214; Erratum: Geom. Dedicata 84 (2001), 331–332. Zbl 0980.53061, MR 1772203, 10.1023/A:1005287907806
Reference: [19] Kowalski, O., Vanhecke, L.: Riemannian manifolds with homogeneous geodesics. Boll. Un. Math. Ital. 5, B(7) (1991), 189–246. Zbl 0731.53046, MR 1110676
Reference: [20] Kowalski, O., Vlášek, Z.: Homogeneous Riemannian manifolds with only one homogeneous geodesic. Publ. Math. Debrecen 62, 3-4 (2003), 437–446. Zbl 1060.53043, MR 2008107
Reference: [21] Kowalski, O., Vlášek, Z.: On the moduli space of locally homogeneous affine connections in plane domains. Comment. Math. Univ. Carolinae 44, 2 (2003), 229–234. MR 2026160
Reference: [22] Marinosci, R.A.: Homogeneous geodesics in a three-dimensional Lie group. Comm. Math. Univ. Carolinae 43, 2 (2002), 261–270. Zbl 1090.53038, MR 1922126
Reference: [23] Opozda, B.: A classification of locally homogeneous connections on 2-dimensional manifolds. Differential Geometry and its Applications 21, 2 (2004), 173–198. Zbl 1063.53024, MR 2073824
Reference: [24] Philip, S.: Penrose limits of homogeneous spaces. J. Geom. Phys. 56 (2006), 1516–1533. Zbl 1104.83020, MR 2240408, 10.1016/j.geomphys.2005.08.002
.

Files

Files Size Format View
ActaOlom_50-2011-1_4.pdf 273.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo