[1] Albiac F., Kalton N.J.:
Topics in Banach Space Theory. Graduate Texts in Mathematics, 233, Springer, New York, NY, USA, 2006.
MR 2192298 |
Zbl 1094.46002
[2] Ansari S.I.:
On Banach spaces $Y$ for which $B(C(\Omega),Y)= K(C(\Omega),Y)$. Pacific J. Math. 169 (1995), 201–218.
MR 1346253 |
Zbl 0831.47015
[3] Bator E.M.:
Remarks on completely continuous operators. Bull. Polish Acad. Sci. Math. 37 (1989), 409–413.
MR 1101901 |
Zbl 0767.46010
[5] Bator E.M., Lewis P., Ochoa J.:
Evaluation maps, restriction maps, and compactness. Colloq. Math. 78 (1998), 1–17.
MR 1658115 |
Zbl 0948.46008
[6] Bessaga C., Pelczynski A.:
On bases and unconditional convergence of series in Banach spaces. Studia Math. 17 (1958), 151–174.
MR 0115069 |
Zbl 0084.09805
[9] Bourgain J.:
New Classes of $\mathcal{L}_p$-spaces. Lecture Notes in Math., 889, Springer, Berlin-New York, 1981.
MR 0639014
[11] Bourgain J.:
$H^{\infty }$ is a Grothendieck space. Studia Math. 75 (1983), 193–216.
MR 0722264
[13] Diestel J.:
Sequences and Series in Banach Spaces. Graduate Texts in Mathematics, 92, Springer, Berlin, 1984.
MR 0737004
[15] Diestel J., Uhl J.J., Jr.:
Vector Measures. Math. Surveys 15, American Mathematical Society, Providence, RI, 1977.
MR 0453964 |
Zbl 0521.46035
[18] Emmanuele G.:
On the containment of $c_0$ in spaces of compact operators. Bull. Sci. Math. 115 (1991), 177–184.
MR 1101022
[19] Emmanuele G.:
Dominated operators on $C[0,1]$ and the $(CRP)$. Collect. Math. 41 (1990), 21–25.
MR 1134442 |
Zbl 0752.47006
[20] Emmanuele G.:
A dual characterization of Banach spaces not containing $\ell^1$. Bull. Polish Acad. Sci. Math. 34 (1986), 155–160.
MR 0861172
[23] Ghenciu I., Lewis P.:
The Dunford-Pettis property, the Gelfand-Phillips property and $(L)$-sets". Colloq. Math. 106 (2006), 311–324.
DOI 10.4064/cm106-2-11 |
MR 2283818
[27] Leavelle T.: Dissertation. UNT.
[28] Lindenstrauss J., Tzafriri L.:
Classical Banach Spaces II. Springer, Berlin-New York, 1979.
MR 0540367 |
Zbl 0403.46022
[29] Pełczyński A.: On Banach spaces containing $L^1(\mu)$. Studia Math. 30 (1968), 231–246.
[30] Pełczyński A.:
Banach spaces on which every unconditionally converging operator is weakly compact. Bull. Acad. Polon. Sci. Math. Astronom. Phys. 10 (1962), 641–648.
MR 0149295 |
Zbl 0107.32504
[31] Pełczyński A., Semadeni Z.:
Spaces of continuous functions (III). Studia Math. 18 (1959), 211–222.
MR 0107806 |
Zbl 0091.27803
[32] Pisier G.:
Factorization of Linear Operators and Geometry of Banach Spaces. CBMS Regional Conf. Series in Math. 60, American Mathematical Society, Providence, RI, 1986.
MR 0829919 |
Zbl 0588.46010
[35] Saab E., Saab P.:
On stability problems of some properties in Banach spaces. in: K. Sarosz (ed.), Function Spaces, Lecture Notes Pure Appl. Math., 136, Dekker, New York 1992, 367–394.
MR 1152362 |
Zbl 0787.46022