Previous |  Up |  Next

Article

Keywords:
the reciprocal Dunford-Pettis property; property $(wL)$; spaces of compact operators; weakly precompact sets
Summary:
A Banach space $X$ has the reciprocal Dunford-Pettis property ($RDPP$) if every completely continuous operator $T$ from $X$ to any Banach space $Y$ is weakly compact. A Banach space $X$ has the $RDPP$ (resp. property $(wL)$) if every $L$-subset of $X^*$ is relatively weakly compact (resp. weakly precompact). We prove that the projective tensor product $X \otimes{_\pi} Y$ has property $(wL)$ when $X$ has the $RDPP$, $Y$ has property $(wL)$, and $L(X,Y^*)=K(X,Y^*)$.
References:
[1] Albiac F., Kalton N.J.: Topics in Banach Space Theory. Graduate Texts in Mathematics, 233, Springer, New York, NY, USA, 2006. MR 2192298 | Zbl 1094.46002
[2] Ansari S.I.: On Banach spaces $Y$ for which $B(C(\Omega),Y)= K(C(\Omega),Y)$. Pacific J. Math. 169 (1995), 201–218. MR 1346253 | Zbl 0831.47015
[3] Bator E.M.: Remarks on completely continuous operators. Bull. Polish Acad. Sci. Math. 37 (1989), 409–413. MR 1101901 | Zbl 0767.46010
[4] Bator E.M., Lewis P.: Operators having weakly precompact adjoints. Math. Nachr. 157 (2006), 99–103. DOI 10.1002/mana.19921570109 | MR 1233050 | Zbl 0792.47021
[5] Bator E.M., Lewis P., Ochoa J.: Evaluation maps, restriction maps, and compactness. Colloq. Math. 78 (1998), 1–17. MR 1658115 | Zbl 0948.46008
[6] Bessaga C., Pelczynski A.: On bases and unconditional convergence of series in Banach spaces. Studia Math. 17 (1958), 151–174. MR 0115069 | Zbl 0084.09805
[7] Bombal F.: On $V^*$ sets and Pelczynski's property $V^*$. Glasgow Math. J. 32 (1990), 109–120. DOI 10.1017/S0017089500009113 | MR 1045091
[8] Bombal F., Villanueva I.: On the Dunford-Pettis property of the tensor product of $C(K)$ spaces. Proc. Amer. Math. Soc. 129 (2001), 1359–1363. DOI 10.1090/S0002-9939-00-05662-8 | MR 1712870 | Zbl 0983.46023
[9] Bourgain J.: New Classes of $\mathcal{L}_p$-spaces. Lecture Notes in Math., 889, Springer, Berlin-New York, 1981. MR 0639014
[10] Bourgain J.: New Banach space properties of the disc algebra and $H^{\infty }$. Acta Math. 152 (1984), 1–2, 148. DOI 10.1007/BF02392189 | MR 0736210
[11] Bourgain J.: $H^{\infty }$ is a Grothendieck space. Studia Math. 75 (1983), 193–216. MR 0722264
[12] Delbaen F.: Weakly compact operators on the disk algebra. J. Algebra 45 (1977), 284–294. DOI 10.1016/0021-8693(77)90328-3 | MR 0482222
[13] Diestel J.: Sequences and Series in Banach Spaces. Graduate Texts in Mathematics, 92, Springer, Berlin, 1984. MR 0737004
[14] Diestel J.: A survey of results related to the Dunford-Pettis property. Contemporary Math. 2 (1980), 15–60. DOI 10.1090/conm/002/621850 | MR 0621850 | Zbl 0571.46013
[15] Diestel J., Uhl J.J., Jr.: Vector Measures. Math. Surveys 15, American Mathematical Society, Providence, RI, 1977. MR 0453964 | Zbl 0521.46035
[16] Emmanuele G.: A remark on the containment of $c_0$ in spaces of compact operators. Math. Proc. Cambr. Philos. Soc. 111 (1992), 331–335. DOI 10.1017/S0305004100075435 | MR 1142753
[17] Emmanuele G.: The reciprocal Dunford-Pettis property and projective tensor products. Math. Proc. Cambridge Philos. Soc. 109 (1991), 161–166. DOI 10.1017/S0305004100069632 | MR 1075128
[18] Emmanuele G.: On the containment of $c_0$ in spaces of compact operators. Bull. Sci. Math. 115 (1991), 177–184. MR 1101022
[19] Emmanuele G.: Dominated operators on $C[0,1]$ and the $(CRP)$. Collect. Math. 41 (1990), 21–25. MR 1134442 | Zbl 0752.47006
[20] Emmanuele G.: A dual characterization of Banach spaces not containing $\ell^1$. Bull. Polish Acad. Sci. Math. 34 (1986), 155–160. MR 0861172
[21] Emmanuele G., John K.: Uncomplementability of spaces of compact operators in larger spaces of operators. Czechoslovak Math. J. 47 (1997), 19–31. DOI 10.1023/A:1022483919972 | MR 1435603 | Zbl 0903.46006
[22] Ghenciu I., Lewis P.: The embeddability of $c_0$ in spaces of operators. Bull. Polish. Acad. Sci. Math. 56 (2008), 239–256. DOI 10.4064/ba56-3-7 | MR 2481977 | Zbl 1167.46016
[23] Ghenciu I., Lewis P.: The Dunford-Pettis property, the Gelfand-Phillips property and $(L)$-sets". Colloq. Math. 106 (2006), 311–324. DOI 10.4064/cm106-2-11 | MR 2283818
[24] Ghenciu I., Lewis P.: Almost weakly compact operators. Bull. Polish. Acad. Sci. Math. 54 (2006), 237–256. DOI 10.4064/ba54-3-6 | MR 2287199 | Zbl 1118.46016
[25] Grothendieck A.: Sur les applications linéaires faiblement compactes d'espaces du type $C(K)$. Canad. J. Math. 5 (1953), 129–173. DOI 10.4153/CJM-1953-017-4 | MR 0058866 | Zbl 0050.10902
[26] Kalton N.: Spaces of compact operators. Math. Ann. 208 (1974), 267–278. DOI 10.1007/BF01432152 | MR 0341154 | Zbl 0266.47038
[27] Leavelle T.: Dissertation. UNT.
[28] Lindenstrauss J., Tzafriri L.: Classical Banach Spaces II. Springer, Berlin-New York, 1979. MR 0540367 | Zbl 0403.46022
[29] Pełczyński A.: On Banach spaces containing $L^1(\mu)$. Studia Math. 30 (1968), 231–246.
[30] Pełczyński A.: Banach spaces on which every unconditionally converging operator is weakly compact. Bull. Acad. Polon. Sci. Math. Astronom. Phys. 10 (1962), 641–648. MR 0149295 | Zbl 0107.32504
[31] Pełczyński A., Semadeni Z.: Spaces of continuous functions (III). Studia Math. 18 (1959), 211–222. MR 0107806 | Zbl 0091.27803
[32] Pisier G.: Factorization of Linear Operators and Geometry of Banach Spaces. CBMS Regional Conf. Series in Math. 60, American Mathematical Society, Providence, RI, 1986. MR 0829919 | Zbl 0588.46010
[33] Pitt H.R.: A note on bilinear forms. J. London Math. Soc. 11 (1936), 174–180. DOI 10.1112/jlms/s1-11.3.174 | MR 1574344 | Zbl 0014.31201
[34] Ryan R.A.: Introduction to Tensor Products of Banach Spaces. Springer, London, 2002. MR 1888309 | Zbl 1090.46001
[35] Saab E., Saab P.: On stability problems of some properties in Banach spaces. in: K. Sarosz (ed.), Function Spaces, Lecture Notes Pure Appl. Math., 136, Dekker, New York 1992, 367–394. MR 1152362 | Zbl 0787.46022
[36] Tzafriri L.: Reflexivity in Banach lattices and their subspaces. J. Functional Analysis 10 (1972), 1–18. DOI 10.1016/0022-1236(72)90054-7 | MR 0358303 | Zbl 0234.46013
Partner of
EuDML logo