Previous |  Up |  Next

Article

Keywords:
generalized dihedral group; Burnside ring; augmentation ideal; augmentation quotient
Summary:
Let $H$ be a finite abelian group of odd order, $\mathcal {D}$ be its generalized dihedral group, i.e., the semidirect product of $C_2$ acting on $H$ by inverting elements, where $C_2$ is the cyclic group of order two. Let $\Omega (\mathcal {D})$ be the Burnside ring of $\mathcal {D}$, $\Delta (\mathcal {D})$ be the augmentation ideal of $\Omega (\mathcal {D})$. Denote by $\Delta ^n(\mathcal {D})$ and $Q_n(\mathcal {D})$ the $n$th power of $\Delta (\mathcal {D})$ and the $n$th consecutive quotient group $\Delta ^n(\mathcal {D})/\Delta ^{n+1}(\mathcal {D})$, respectively. This paper provides an explicit $\mathbb {Z}$-basis for $\Delta ^n(\mathcal {D})$ and determines the isomorphism class of $Q_n(\mathcal {D})$ for each positive integer $n$.
References:
[1] Bak, A., Tang, G.: Solution to the presentation problem for powers of the augmentation ideal of torsion free and torsion Abelian groups. Adv. Math. 189 (2004), 1-37. DOI 10.1016/j.aim.2003.11.002 | MR 2093478 | Zbl 1068.16032
[2] Chang, S.: Augmentation quotients for complex representation rings of point groups. J. Anhui Univ., Nat. Sci. 38 (2014), 13-19 Chinese. English summary. MR 3363485 | Zbl 1324.20002
[3] Chang, S.: Augmentation quotients for complex representation rings of generalized quaternion groups. Chin. Ann. Math., Ser. B. 37 (2016), 571-584. DOI 10.1007/s11401-016-1017-x | MR 3516112 | Zbl 1351.20003
[4] Chang, S., Chen, H., Tang, G.: Augmentation quotients for complex representation rings of dihedral groups. Front. Math. China 7 (2012), 1-18. DOI 10.1007/s11464-011-0162-5 | MR 2876895 | Zbl 1269.20001
[5] Chang, S., Tang, G.: A basis for augmentation quotients of finite Abelian groups. J. Algebra 327 (2011), 466-488. DOI 10.1016/j.jalgebra.2010.08.020 | MR 2746045 | Zbl 1232.20006
[6] Magurn, B. A.: An Algebraic Introduction to $K$-Theory. Encyclopedia of Mathematics and Its Applications 87 Cambridge University Press, Cambridge (2002). MR 1906572 | Zbl 1002.19001
[7] Parmenter, M. M.: A basis for powers of the augmentation ideal. Algebra Colloq. 8 (2001), 121-128. MR 1838512 | Zbl 0979.16015
[8] Tang, G.: Presenting powers of augmentation ideals of elementary $p$-groups. $K$-Theory 23 (2001), 31-39. DOI 10.1023/A:1017572832381 | MR 1852453 | Zbl 0990.16024
[9] Tang, G.: On a problem of Karpilovsky. Algebra Colloq. 10 (2003), 11-16. DOI 10.1007/s100110300002 | MR 1961501 | Zbl 1034.20006
[10] Tang, G.: Structure of augmentation quotients of finite homocyclic Abelian groups. Sci. China, Ser. A. 50 (2007), 1280-1288. DOI 10.1007/s11425-007-0112-6 | MR 2370615 | Zbl 1143.20003
[11] Wu, H., Tang, G. P.: Structure of powers of the augmentation ideal and their consecutive quotients for the Burnside ring of a finite abelian group. Adv. Math. (China) 36 (2007), 627-630 Chinese. English summary. MR 2380918
Partner of
EuDML logo