Previous |  Up |  Next

Article

Title: Variations by generalized symmetries of local Noether strong currents equivalent to global canonical Noether currents (English)
Author: Palese, Marcella
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 24
Issue: 2
Year: 2016
Pages: 125-135
Summary lang: English
.
Category: math
.
Summary: We will pose the inverse problem question within the Krupka variational sequence framework. In particular, the interplay of inverse problems with symmetry and invariance properties will be exploited considering that the cohomology class of the variational Lie derivative of an equivalence class of forms, closed in the variational sequence, is trivial. We will focalize on the case of symmetries of globally defined field equations which are only locally variational and prove that variations of local Noether strong currents are variationally equivalent to global canonical Noether currents. Variations, taken to be generalized symmetries and also belonging to the kernel of the second variational derivative of the local problem, generate canonical Noether currents -- associated with variations of local Lagrangians -- which in particular turn out to be conserved \emph {along any section}. We also characterize the variation of the canonical Noether currents associated with a local variational problem. (English)
Keyword: fibered manifold
Keyword: jet space
Keyword: Lagrangian formalism
Keyword: variational sequence
Keyword: second variational derivative. cohomology
Keyword: symmetry
Keyword: conservation law
MSC: 55N30
MSC: 55R10
MSC: 58A12
MSC: 58A20
MSC: 58E30
MSC: 70S10
idZBL: Zbl 1366.58002
idMR: MR3590210
.
Date available: 2017-02-28T16:43:35Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/146016
.
Reference: [1] Allemandi, G., Francaviglia, M., Raiteri, M.: Covariant charges in Chern-Simons $AdS3$ gravity.Classical Quantum Gravity, 20, 3, 2003, 483-506, MR 1957170
Reference: [2] Anderson, I. M., Duchamp, T.: On the existence of global variational principles.Amer. Math. J., 102, 1980, 781-868, Zbl 0454.58021, MR 0590637, 10.2307/2374195
Reference: [3] Bashkirov, D., Giachetta, G., Mangiarotti, L., Sardanashvily, G.: Noether's second theorem for BRST symmetries.J. Math. Phys., 46, 5, 2005, 053517, 23 pp.. Zbl 1110.58010, MR 2143026, 10.1063/1.1899988
Reference: [4] Bashkirov, D., Giachetta, G., Mangiarotti, L., Sardanashvily, G.: Noether's second theorem in a general setting reducible gauge theories.J. Phys., A38, 2005, 5329-5344, Zbl 1070.70014, MR 2148427
Reference: [5] Bashkirov, D., Giachetta, G., Mangiarotti, L., Sardanashvily, G.: The antifield Koszul-Tate complex of reducible Noether identities.J. Math. Phys., 46, 10, 2005, 103513, 19 pp.. Zbl 1111.70026, MR 2178613, 10.1063/1.2054647
Reference: [6] Bessel-Hagen, E.: Über die Erhaltungssätze der Elektrodynamik.Math. Ann., 84, 1921, 258-276, MR 1512036, 10.1007/BF01459410
Reference: [7] Borowiec, A., Ferraris, M., Francaviglia, M., Palese, M.: Conservation laws for non-global Lagrangians.Univ. Iagel. Acta Math., 41, 2003, 319-331, Zbl 1060.70034, MR 2084774
Reference: [8] Brajerčík, J., Krupka, D.: Variational principles for locally variational forms.J. Math. Phys., 46, 5, 2005, 052903, 15 pp. Zbl 1110.58011, MR 2143003, 10.1063/1.1901323
Reference: [9] Cattafi, F., Palese, M., Winterroth, E.: Variational derivatives in locally Lagrangian field theories and Noether--Bessel-Hagen currents.Int. J. Geom. Methods Mod. Phys., 13, 8, 2016, 1650067. Zbl 1357.58023, MR 3544984
Reference: [10] Dedecker, P., Tulczyjew, W. M.: Spectral sequences and the inverse problem of the calculus of variations.Lecture Notes in Mathematics, 836, 1980, 498-503, Springer--Verlag, Zbl 0482.49027, MR 0607719, 10.1007/BFb0089761
Reference: [11] Eck, D. J.: Gauge-natural bundles and generalized gauge theories.Mem. Amer. Math. Soc., 247, 1981, 1-48, Zbl 0493.53052, MR 0632164
Reference: [12] Ferraris, M., Francaviglia, M., Raiteri, M.: Conserved Quantities from the Equations of Motion (with applications to natural and gauge natural theories of gravitation).Class.Quant.Grav., 20, 2003, 4043-4066, MR 2017333, 10.1088/0264-9381/20/18/312
Reference: [13] Ferraris, M., Palese, M., Winterroth, E.: Local variational problems and conservation laws.Diff. Geom. Appl, 29, 2011, S80-S85, Zbl 1233.58002, MR 2832003, 10.1016/j.difgeo.2011.04.011
Reference: [14] Francaviglia, M., Palese, M., Vitolo, R.: Symmetries in finite order variational sequences.Czech. Math. J., 52, 1, 2002, 197-213, Zbl 1006.58014, MR 1885465, 10.1023/A:1021735824163
Reference: [15] Francaviglia, M., Palese, M., Vitolo, R.: The Hessian and Jacobi Morphisms for Higher Order Calculus of Variations.Diff. Geom. Appl., 22, 1, 2005, 105-120, Zbl 1065.58010, MR 2106379, 10.1016/j.difgeo.2004.07.008
Reference: [16] Francaviglia, M., Palese, M., Winterroth, E.: Locally variational invariant field equations and global currents: Chern-Simons theories.Commun. Math., 20, 1, 2012, 13-22, Zbl 1344.70047, MR 3001628
Reference: [17] Francaviglia, M., Palese, M., Winterroth, E.: Variationally equivalent problems and variations of Noether currents.Int. J. Geom. Meth. Mod. Phys., 10, 1, 2013, 1220024. Zbl 1271.58008, MR 2998326
Reference: [18] Francaviglia, M., Palese, M., Winterroth, E.: Cohomological obstructions in locally variational field theories.Jour. Phys. Conf. Series, 474, 2013, 012017.
Reference: [19] Giachetta, G., Mangiarotti, L., Sardanashvily, G.: Lagrangian supersymmetries depending on derivatives. Global analysis and cohomology.Comm. Math. Phys., 259, 1, 2005, 103-128, Zbl 1086.58008, MR 2169970, 10.1007/s00220-005-1297-6
Reference: [20] Kosmann-Schwarzbach, Y.: The Noether Theorems; translated from French by Bertram E. Schwarzbach.Sources and Studies in the History of Mathematics and Physical Sciences, Springer, New York , 2011, MR 2761345
Reference: [21] Krupka, D.: Some Geometric Aspects of Variational Problems in Fibred Manifolds.Folia Fac. Sci. Nat. UJEP Brunensis, 14, 1973, 1-65,
Reference: [22] Krupka, D.: Variational Sequences on Finite Order Jet Spaces.Differential Geometry and its Applications, Proc. Conf., Brno, Czechoslovakia, 1989, 236-254, World Scientific, MR 1062026
Reference: [23] Krupka, D., Krupková, O., Prince, G., Sarlet, W.: Contact symmetries of the Helmholtz form.Differential Geom. Appl., 25, 5, 2007, 518-542, Zbl 1354.58012, MR 2351428, 10.1016/j.difgeo.2007.06.003
Reference: [24] Noether, E.: Invariante Variationsprobleme.Nachr. Ges. Wiss. Gött., Math. Phys. Kl., II, 1918, 235-257,
Reference: [25] Palese, M., Rossi, O., Winterroth, E., Musilová, J.: Variational sequences, representation sequences and applications in physics.SIGMA, 12, 2016, 045, 45 pages. Zbl 1347.70043, MR 3492865
Reference: [26] Palese, M., Winterroth, E.: Covariant gauge-natural conservation laws.Rep. Math. Phys., 54, 3, 2004, 349-364, Zbl 1066.58009, MR 2115744, 10.1016/S0034-4877(04)80024-7
Reference: [27] Palese, M., Winterroth, E.: Global Generalized Bianchi Identities for Invariant Variational Problems on Gauge-natural Bundles.Arch. Math. (Brno), 41, 3, 2005, 289-310, Zbl 1112.58005, MR 2188385
Reference: [28] Palese, M., Winterroth, E.: Noether Theorems and Reality of Motion.Proc. Marcel Grossmann Meeting 2015, 2016, World Scientific, to appear.
Reference: [29] Palese, M., Winterroth, E.: Variational Lie derivative and cohomology classes.AIP Conf. Proc., 1360, 2011, 106-112, Zbl 1276.70012
Reference: [30] Palese, M., Winterroth, E.: Topological obstructions in Lagrangian field theories, with an application to $3$D Chern--Simons gauge theory.preprint submitted. MR 3605665
Reference: [31] Sardanashvily, G.: Noether conservation laws issue from the gauge invariance of an Euler-Lagrange operator, but not a Lagrangian.arXiv:math-ph/0302012 , 2003,
Reference: [32] Sardanashvily, G.: Noether identities of a differential operator. The Koszul-Tate complex.Int. J. Geom. Methods Mod. Phys., 2, 5, 2005, 873-886, Zbl 1085.58005, MR 2177289, 10.1142/S0219887805000818
Reference: [33] Sardanashvily, G.: Noether's theorems. Applications in mechanics and field theory.Atlantis Studies in Variational Geometry, 3, 2016, Atlantis Press, Paris, xvii+297 pp.. Zbl 1357.58002, MR 3467590
Reference: [34] Takens, F.: A global version of the inverse problem of the calculus of variations.J. Diff. Geom., 14, 1979, 543-562, Zbl 0463.58015, MR 0600611, 10.4310/jdg/1214435235
Reference: [35] Tulczyjew, W. M.: The Lagrange Complex.Bull. Soc. Math. France, 105, 1977, 419-431, Zbl 0408.58020, MR 0494272, 10.24033/bsmf.1860
Reference: [36] Vinogradov, A. M.: On the algebro-geometric foundations of Lagrangian field theory.Soviet Math. Dokl., 18, 1977, 1200-1204, Zbl 0403.58005, MR 0501142
.

Files

Files Size Format View
ActaOstrav_24-2016-2_4.pdf 422.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo