Previous |  Up |  Next

Article

Keywords:
fibered manifold; jet space; Lagrangian formalism; variational sequence; second variational derivative. cohomology; symmetry; conservation law
Summary:
We will pose the inverse problem question within the Krupka variational sequence framework. In particular, the interplay of inverse problems with symmetry and invariance properties will be exploited considering that the cohomology class of the variational Lie derivative of an equivalence class of forms, closed in the variational sequence, is trivial. We will focalize on the case of symmetries of globally defined field equations which are only locally variational and prove that variations of local Noether strong currents are variationally equivalent to global canonical Noether currents. Variations, taken to be generalized symmetries and also belonging to the kernel of the second variational derivative of the local problem, generate canonical Noether currents -- associated with variations of local Lagrangians -- which in particular turn out to be conserved \emph {along any section}. We also characterize the variation of the canonical Noether currents associated with a local variational problem.
References:
[1] Allemandi, G., Francaviglia, M., Raiteri, M.: Covariant charges in Chern-Simons $AdS3$ gravity. Classical Quantum Gravity, 20, 3, 2003, 483-506, MR 1957170
[2] Anderson, I. M., Duchamp, T.: On the existence of global variational principles. Amer. Math. J., 102, 1980, 781-868, DOI 10.2307/2374195 | MR 0590637 | Zbl 0454.58021
[3] Bashkirov, D., Giachetta, G., Mangiarotti, L., Sardanashvily, G.: Noether's second theorem for BRST symmetries. J. Math. Phys., 46, 5, 2005, 053517, 23 pp.. DOI 10.1063/1.1899988 | MR 2143026 | Zbl 1110.58010
[4] Bashkirov, D., Giachetta, G., Mangiarotti, L., Sardanashvily, G.: Noether's second theorem in a general setting reducible gauge theories. J. Phys., A38, 2005, 5329-5344, MR 2148427 | Zbl 1070.70014
[5] Bashkirov, D., Giachetta, G., Mangiarotti, L., Sardanashvily, G.: The antifield Koszul-Tate complex of reducible Noether identities. J. Math. Phys., 46, 10, 2005, 103513, 19 pp.. DOI 10.1063/1.2054647 | MR 2178613 | Zbl 1111.70026
[6] Bessel-Hagen, E.: Über die Erhaltungssätze der Elektrodynamik. Math. Ann., 84, 1921, 258-276, DOI 10.1007/BF01459410 | MR 1512036
[7] Borowiec, A., Ferraris, M., Francaviglia, M., Palese, M.: Conservation laws for non-global Lagrangians. Univ. Iagel. Acta Math., 41, 2003, 319-331, MR 2084774 | Zbl 1060.70034
[8] Brajerčík, J., Krupka, D.: Variational principles for locally variational forms. J. Math. Phys., 46, 5, 2005, 052903, 15 pp. DOI 10.1063/1.1901323 | MR 2143003 | Zbl 1110.58011
[9] Cattafi, F., Palese, M., Winterroth, E.: Variational derivatives in locally Lagrangian field theories and Noether--Bessel-Hagen currents. Int. J. Geom. Methods Mod. Phys., 13, 8, 2016, 1650067. MR 3544984 | Zbl 1357.58023
[10] Dedecker, P., Tulczyjew, W. M.: Spectral sequences and the inverse problem of the calculus of variations. Lecture Notes in Mathematics, 836, 1980, 498-503, Springer--Verlag, DOI 10.1007/BFb0089761 | MR 0607719 | Zbl 0482.49027
[11] Eck, D. J.: Gauge-natural bundles and generalized gauge theories. Mem. Amer. Math. Soc., 247, 1981, 1-48, MR 0632164 | Zbl 0493.53052
[12] Ferraris, M., Francaviglia, M., Raiteri, M.: Conserved Quantities from the Equations of Motion (with applications to natural and gauge natural theories of gravitation). Class.Quant.Grav., 20, 2003, 4043-4066, DOI 10.1088/0264-9381/20/18/312 | MR 2017333
[13] Ferraris, M., Palese, M., Winterroth, E.: Local variational problems and conservation laws. Diff. Geom. Appl, 29, 2011, S80-S85, DOI 10.1016/j.difgeo.2011.04.011 | MR 2832003 | Zbl 1233.58002
[14] Francaviglia, M., Palese, M., Vitolo, R.: Symmetries in finite order variational sequences. Czech. Math. J., 52, 1, 2002, 197-213, DOI 10.1023/A:1021735824163 | MR 1885465 | Zbl 1006.58014
[15] Francaviglia, M., Palese, M., Vitolo, R.: The Hessian and Jacobi Morphisms for Higher Order Calculus of Variations. Diff. Geom. Appl., 22, 1, 2005, 105-120, DOI 10.1016/j.difgeo.2004.07.008 | MR 2106379 | Zbl 1065.58010
[16] Francaviglia, M., Palese, M., Winterroth, E.: Locally variational invariant field equations and global currents: Chern-Simons theories. Commun. Math., 20, 1, 2012, 13-22, MR 3001628 | Zbl 1344.70047
[17] Francaviglia, M., Palese, M., Winterroth, E.: Variationally equivalent problems and variations of Noether currents. Int. J. Geom. Meth. Mod. Phys., 10, 1, 2013, 1220024. MR 2998326 | Zbl 1271.58008
[18] Francaviglia, M., Palese, M., Winterroth, E.: Cohomological obstructions in locally variational field theories. Jour. Phys. Conf. Series, 474, 2013, 012017.
[19] Giachetta, G., Mangiarotti, L., Sardanashvily, G.: Lagrangian supersymmetries depending on derivatives. Global analysis and cohomology. Comm. Math. Phys., 259, 1, 2005, 103-128, DOI 10.1007/s00220-005-1297-6 | MR 2169970 | Zbl 1086.58008
[20] Kosmann-Schwarzbach, Y.: The Noether Theorems; translated from French by Bertram E. Schwarzbach. Sources and Studies in the History of Mathematics and Physical Sciences, Springer, New York , 2011, MR 2761345
[21] Krupka, D.: Some Geometric Aspects of Variational Problems in Fibred Manifolds. Folia Fac. Sci. Nat. UJEP Brunensis, 14, 1973, 1-65,
[22] Krupka, D.: Variational Sequences on Finite Order Jet Spaces. Differential Geometry and its Applications, Proc. Conf., Brno, Czechoslovakia, 1989, 236-254, World Scientific, MR 1062026
[23] Krupka, D., Krupková, O., Prince, G., Sarlet, W.: Contact symmetries of the Helmholtz form. Differential Geom. Appl., 25, 5, 2007, 518-542, DOI 10.1016/j.difgeo.2007.06.003 | MR 2351428 | Zbl 1354.58012
[24] Noether, E.: Invariante Variationsprobleme. Nachr. Ges. Wiss. Gött., Math. Phys. Kl., II, 1918, 235-257,
[25] Palese, M., Rossi, O., Winterroth, E., Musilová, J.: Variational sequences, representation sequences and applications in physics. SIGMA, 12, 2016, 045, 45 pages. MR 3492865 | Zbl 1347.70043
[26] Palese, M., Winterroth, E.: Covariant gauge-natural conservation laws. Rep. Math. Phys., 54, 3, 2004, 349-364, DOI 10.1016/S0034-4877(04)80024-7 | MR 2115744 | Zbl 1066.58009
[27] Palese, M., Winterroth, E.: Global Generalized Bianchi Identities for Invariant Variational Problems on Gauge-natural Bundles. Arch. Math. (Brno), 41, 3, 2005, 289-310, MR 2188385 | Zbl 1112.58005
[28] Palese, M., Winterroth, E.: Noether Theorems and Reality of Motion. Proc. Marcel Grossmann Meeting 2015, 2016, World Scientific, to appear.
[29] Palese, M., Winterroth, E.: Variational Lie derivative and cohomology classes. AIP Conf. Proc., 1360, 2011, 106-112, Zbl 1276.70012
[30] Palese, M., Winterroth, E.: Topological obstructions in Lagrangian field theories, with an application to $3$D Chern--Simons gauge theory. preprint submitted. MR 3605665
[31] Sardanashvily, G.: Noether conservation laws issue from the gauge invariance of an Euler-Lagrange operator, but not a Lagrangian. arXiv:math-ph/0302012 , 2003,
[32] Sardanashvily, G.: Noether identities of a differential operator. The Koszul-Tate complex. Int. J. Geom. Methods Mod. Phys., 2, 5, 2005, 873-886, DOI 10.1142/S0219887805000818 | MR 2177289 | Zbl 1085.58005
[33] Sardanashvily, G.: Noether's theorems. Applications in mechanics and field theory. Atlantis Studies in Variational Geometry, 3, 2016, Atlantis Press, Paris, xvii+297 pp.. MR 3467590 | Zbl 1357.58002
[34] Takens, F.: A global version of the inverse problem of the calculus of variations. J. Diff. Geom., 14, 1979, 543-562, DOI 10.4310/jdg/1214435235 | MR 0600611 | Zbl 0463.58015
[35] Tulczyjew, W. M.: The Lagrange Complex. Bull. Soc. Math. France, 105, 1977, 419-431, DOI 10.24033/bsmf.1860 | MR 0494272 | Zbl 0408.58020
[36] Vinogradov, A. M.: On the algebro-geometric foundations of Lagrangian field theory. Soviet Math. Dokl., 18, 1977, 1200-1204, MR 0501142 | Zbl 0403.58005
Partner of
EuDML logo