[1] Aldaya, V., Azcarraga, J. A. de: 
Variational Principles on $r-th$ order jets of fibre bundles in Field Theory. J. Math. Phys., 19, 9, 1978, 1869-1875,  
DOI 10.1063/1.523904 | 
MR 0496116[2] Aldaya, V., Azcarraga, J.A. de: 
Higher order Hamiltonian formalism in Field Theory. J. Phys. A, 13, 8, 1980, 2545-2551,  
MR 0582906 | 
Zbl 0467.58013[3] Arnold, V. I.: 
Mathematical methods of classical mechanics. 60, 1989, Springer-Verlag, New York,  
MR 0997295 | 
Zbl 0692.70003[4] Dedecker, P.: 
On the generalization of symplectic geometry to multiple integrals in the calculus of variations. Differential Geometrical Methods in Mathematical Physics, 570, 1977, 395-456, Springer, Berlin,  
MR 0458478 | 
Zbl 0352.49018[5] León, M. de, Marín-Solano, J., Marrero, J. C., Muñoz-Lecanda, M. C., Román-Roy, N.: 
Pre-multisymplectic constraint algorithm for field theories. Int. J. Geom. Meth. Mod. Phys., 2, 2005, 839-871,  
DOI 10.1142/S0219887805000880 | 
MR 2177288 | 
Zbl 1156.70317[6] León, M. de, Diego, D. Martín de: 
Symmetries and Constant of the Motion for Singular Lagrangian Systems. Int. J. Theor. Phys., 35, 5, 1996, 975-1011,  
DOI 10.1007/BF02302383 | 
MR 1386775[7] León, M. de, Diego, D. Martín de, Santamaría-Merino, A.: 
Symmetries in classical field theory. Int. J. Geom. Meths. Mod. Phys., 1, 5, 2004, 651-710,  
DOI 10.1142/S0219887804000290 | 
MR 2095443[8] Echeverría-Enríquez, A., León, M. De, Muñoz-Lecanda, M. C., Román-Roy, N.: 
Extended Hamiltonian systems in multisymplectic field theories. J. Math. Phys., 48, 11, 2007, 112901.  
DOI 10.1063/1.2801875 | 
MR 2370237 | 
Zbl 1152.81420[10] Echeverría-Enríquez, A., Muñoz-Lecanda, M.C., Román-Roy, N.: 
Multivector fields and connections: Setting Lagrangian equations in field theories. J. Math. Phys., 39, 9, 1998, 4578-4603,  
DOI 10.1063/1.532525 | 
MR 1643297 | 
Zbl 0927.37054[12] Ferraris, M., Francaviglia, M.: 
Applications of the Poincaré-Cartan form in higher order field theories. Differential Geometry and Its Applications (Brno, 1986), Math. Appl.(East European Ser.), 27, 1987, 31-52,  
MR 0923342 | 
Zbl 0659.58010[13] García, P. L.: 
The Poincaré-Cartan invariant in the calculus of variations. Symp. Math., 14, 1973, 219-246,  
MR 0406246[14] García, P. L., Muñoz, J.: 
On the geometrical structure of higher order variational calculus. Atti. Accad. Sci. Torino Cl. Sci. Fis. Math. Natur., 117, 1983, 127-147,  
MR 0773483 | 
Zbl 0569.58008[15] Giachetta, G., Mangiarotti, L., Sardanashvily, G.: 
New Lagrangian and Hamiltonian methods in field theory. 1997, World Scientific Publishing Co., Inc., River Edge, NJ,  
MR 2001723 | 
Zbl 0913.58001[17] Hélein, F., J, J. Kouneiher: 
Covariant Hamiltonian formalism for the calculus of variations with several variables: Lepage--Dedecker versus De Donder--Weyl. Adv. Theor. Math. Phys., 8, 2004, 565-601,  
MR 2105190 | 
Zbl 1115.70017[19] Krupka, D.: 
Introduction to Global Variational Geometry. 2015, Atlantis Studies in Variational Geometry, Atlantis Press,  
MR 3290001 | 
Zbl 1310.49001[20] Krupka, D., Štěpánková, O.: 
On the Hamilton form in second order calculus of variations. Procs. Int. Meeting on Geometry and Physics, 1982, 85-101,  
MR 0760838[21] Mangiarotti, L., Sardanashvily, G.: 
Gauge Mechanics. 1998, World Scientific, Singapore,  
MR 1689375[23] Prieto-Martínez, P.D., Román-Roy, N.: 
Variational principles for multisymplectic second-order classical field theories. Int. J. Geom. Meth. Mod. Phys, 12, 8, 2015, 1560019.  
MR 3400659[25] Saunders, D.J.: 
The geometry of jet bundles. London Mathematical Society, Lecture notes series, 142, 1989, Cambridge University Press, Cambridge, New York,  
MR 0989588 | 
Zbl 0665.58002