Previous |  Up |  Next

Article

Keywords:
feedback stabilization; homogeneous system; nonlinear control systems; Lyapunov function; finite time stability
Summary:
In this paper, we provide an explicit homogeneous feedback control with the requirement that a control Lyapunov function exists for affine in control systems with bounded parameter that satisfies an homogeneous condition. We use a modified version of the Sontag's formula to achieve our main goal. Moreover, we prove that the existence of an homogeneous control Lyapunov function for an homogeneous system leads to an homogeneous closed-loop system which is asymptotically stable by an homogeneous feedback control. In addition, we study the finite time stability for affine in control systems with varying parameter.
References:
[1] Artstein, Z.: Stabilization with relaxed controls. Nonlinear Anal. TMA 7 (1983), 1163-1173. DOI 10.1016/0362-546x(83)90049-4 | MR 0721403 | Zbl 0525.93053
[2] Bhat, S. P., Bernstein, D. S.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Automat. Control 43 (1998), 678-682. DOI 10.1109/9.668834 | MR 1618028 | Zbl 0925.93821
[3] Cai, X. S., Han, Z. Z., Zhang, W.: Simultaneous stabilization for a collection of multi-input nonlinear systems with uncertain parameters. Acta Automat. Sinica 35 (2009), 206-209. DOI 10.3724/sp.j.1004.2009.00206 | MR 2531861
[4] Čelikovský, S., Aranda-Bricaire, E.: Constructive nonsmooth stabilization of triangular systems. Systems Control Lett. 36 (1999), 21-37. DOI 10.1016/s0167-6911(98)00062-0 | MR 1750623
[5] Huang, J., Yu, L., Xia, S.: Stabilization and finite time stabilization of nonlinear differential inclusions based on control Lyapunov function. Circuits Systems Signal Process. 33 (2015), 2319-2331. DOI 10.1007/s00034-014-9741-5 | MR 3217482
[6] Hong, Y., Wang, J., Cheng, D.: Adaptive finite-time control of nonlinear systems with parametric uncertainty. IEEE Trans. Automat. Control 51 (2006), 858-862. DOI 10.1109/tac.2006.875006 | MR 2232614
[7] Jerbi, H.: A manifold-like characterization of asymptotic stabilizability of homogeneous systems. Systems Control Lett. 41 (2002), 173-178. DOI 10.1016/s0167-6911(01)00172-4 | MR 2072233
[8] Jerbi, H., Kallel, W., Kharrat, T.: On the stabilization of homogeneous perturbed systems. J. Dynamical Control Syst. 14 (2008), 595-606. DOI 10.1007/s10883-008-9053-9 | MR 2448693
[9] Jerbi, H., Kharrat, T.: Only a level set of a control Lyapunov function for homogeneous systems. Kybernetika 41 (2005), 593-600. MR 2192425
[10] Krstic, M., Kokotovic, P. V.: Control Lyapunov function for adaptive nonlinear stabilization. Systems Control Lett. 26 (1995), 17-23. DOI 10.1016/0167-6911(94)00107-7 | MR 1347637
[11] Massera, J. L.: Contributions to stability theory. Ann. Math. 64 (1956), 182-206. DOI 10.2307/1969955 | MR 0079179
[12] Moulay, E.: Stabilization via homogeneous feedback controls. Automatica 44 (2008), 2981-2984. DOI 10.1016/j.automatica.2008.05.003 | MR 2527229
[13] Moulay, E., Perruquetti, W.: Finite time stability and stabilization of a class of continuous systems. J. Math. Anal. Appl. 323 (2006), 1430-1443. DOI 10.1016/j.jmaa.2005.11.046 | MR 2260193 | Zbl 1131.93043
[14] Rosier, L.: Homogeneous Lyapunov function for homogeneous continuous vector field. Systems Control Lett. 19 (1992), 467-473. DOI 10.1016/0167-6911(92)90078-7 | MR 1195304 | Zbl 0762.34032
[15] Sepulchre, R., Aeyels, D.: Homogeneous Lyapunov functions and necessary conditions for stabilization. Math. Control Signals Syst. 9 (1996), 34-58. DOI 10.1007/bf01211517 | MR 1410047
[16] Shafiei, M. H., Yazdanpanah, M. J.: Stabilization of nonlinear systems with a slowly varying parameter by a control Lyapunov function. ISA Trans. 49 (2010), 215-221. DOI 10.1016/j.isatra.2009.11.004
[17] Sontag, E. D.: A "universal" construction of Artstein's Theorem on nonlinear stabilization. Systems Control Lett. 13 (1989), 117-123. DOI 10.1016/0167-6911(89)90028-5 | MR 1014237
[18] Sontag, E. D.: A Lyapunov-like caharacterization of asymptotic controlability. SIAM J. Control Optim. 21 (1983), 462-471. DOI 10.1137/0321028 | MR 0696908
[19] Tsinias, J.: Stabilization of affine in control nonlinear systems. Nonlinear Anal. TMA 12 (1988), 1283-1296. DOI 10.1016/0362-546x(88)90060-0 | MR 0969506 | Zbl 0662.93055
[20] Tsinias, J.: Sufficient Lyapunov like conditions for stabilization. Math. Control Signals Syst. 2 (1989), 343-357. DOI 10.1007/bf02551276 | MR 1015672 | Zbl 0688.93048
[21] Zhang, W., Su, H., Cai, X., Guo, H.: A control Lyapunov approach to stabilization of affine nonlinear systems with bounded uncertain parameters. Circuits Systems Signal Process. 34 (2015), 341-352. DOI 10.1007/s00034-014-9848-8 | MR 3299171
[22] Wang, H., Han, Z., Zhang, W., Xie, Q.: Synchronization of unified chaotic systems with uncertain parameters based on the CLF. Nonlinear Analysis: Real World Appl. 10 (2009), 2842-2849. DOI 10.1016/j.nonrwa.2008.08.010 | MR 2523247
[23] Wang, H., Han, Z., Zhang, W., Xie, Q.: Chaos control and synchronization of unified chaotic systems via linear control. J. Sound Vibration 320 (2009), 365-372. DOI 10.1016/j.jsv.2008.07.023 | MR 2335867
Partner of
EuDML logo