Previous |  Up |  Next

Article

Keywords:
nullnorm; partial order; bounded lattice; distributivity
Summary:
In this paper, we generally study an order induced by nullnorms on bounded lattices. We investigate monotonicity property of nullnorms on bounded lattices with respect to the $F$-partial order. Also, we introduce the set of incomparable elements with respect to the F-partial order for any nullnorm on a bounded lattice. Finally, we investigate the relationship between the order induced by a nullnorm and the distributivity property for nullnorms.
References:
[1] Aşıcı, E.: An order induced by nullnorms and its properties. Fuzzy Sets Syst. 325 (2017), 35-46. DOI 10.1016/j.fss.2016.12.004 | MR 3690353
[2] Aşıcı, E.: On the properties of the $ F $-partial order and the equivalence of nullnorms. Fuzzy Sets Syst. 346 (2018), 72-84. DOI 10.1016/j.fss.2017.11.008 | MR 3812758
[3] Aşıcı, E.: Some notes on the $ F $-partial order. In: Advances in Fuzzy Logic and Technology 2017 (J. Kacprzyk , E. Szmidt, S. Zadroźny, K. Atanassov, and M.Krawczak, eds.), IWIFSGN 2017, EUSFLAT 2017. Advances in Intelligent Systems and Computing 641, Springer, Cham, pp. 78-84. DOI 10.1007/978-3-319-66830-7_7
[4] Aşıcı, E.: Some remarks on an order induced by uninorms. In: Advances in Fuzzy Logic and Technology 2017 (J. Kacprzyk , E. Szmidt, S. Zadroźny, K. Atanassov, and M.Krawczak, eds.), IWIFSGN 2017, EUSFLAT 2017. Advances in Intelligent Systems and Computing 641, Springer, Cham, pp. 69-77. DOI 10.1007/978-3-319-66830-7_7
[5] Aşıcı, E., Karaçal, F.: On the $T$-partial order and properties. Inform. Sci. 267 (2014), 323-333. DOI 10.1016/j.ins.2014.01.032 | MR 3177320
[6] Aşıcı, E., Karaçal, F.: Incomparability with respect to the triangular order. Kybernetika 52 (2016), 15-27. DOI 10.14736/kyb-2016-1-0015 | MR 3482608
[7] Birkhoff, G.: Lattice Theory. Third edition. Providence, 1967. DOI 10.1090/coll/025 | MR 0227053
[8] Calvo, T., Baets, B. De, Fodor, J.: The functional equations of Frank and Alsina for uninorms and nullnorms. Fuzzy Sets Syst. 120 (2001), 385-394. DOI 10.1016/s0165-0114(99)00125-6 | MR 1829256 | Zbl 0977.03026
[9] Casasnovas, J., Mayor, G.: Discrete t-norms and operations on extended multisets. Fuzzy Sets Syst. 159 (2008), 1165-1177. DOI 10.1016/j.fss.2007.12.005 | MR 2416385 | Zbl 1176.03023
[10] Çaylı, G. D.: A characterization of uninorms on bounded lattices by means of triangular norms and triangular conorms. Int. J. General Syst. 47 (2018), 772-793. DOI 10.1080/03081079.2018.1513929 | MR 3867053
[11] Çaylı, G. D.: On a new class of t-norms and t-conorms on bounded lattices. Fuzzy Sets Syst. 332 (2018), 129-143. DOI 10.1016/j.fss.2017.07.015 | MR 3732255
[12] Çaylı, G. D., Drygaś, P.: Some properties of idempotent uninorms on a special class of bounded lattices. Inf. Sci. 422 (2018), 352-363. DOI 10.1016/j.ins.2017.09.018 | MR 3709474
[13] Çaylı, G. D., Karaçal, F., Mesiar, R.: On a new class of uninorms on bounded lattices. Inf. Sci. 367-368 (2016), 221-231. DOI 10.1016/j.ins.2016.05.036 | MR 3684677
[14] Drewniak, J., Drygaś, P., Rak, E.: Distributivity between uninorms and nullnorms. Fuzzy Sets Syst. 159 (2008), 1646-1657. DOI 10.1016/j.fss.2007.09.015 | MR 2419975
[15] Drygaś, P.: Distributive between semi-t-operators and semi-nullnorms. Fuzzy Sets Syst. 264 (2015), 100-109. DOI 10.1016/j.fss.2014.09.003 | MR 3303666
[16] Drygaś, P.: A characterization of idempotent nullnorms. Fuzzy Sets Syst. 145 (2004), 455-461. DOI 10.1016/s0165-0114(03)00259-8 | MR 2075840
[17] Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, 2009. DOI 10.1017/cbo9781139644150 | MR 2538324 | Zbl 1206.68299
[18] Jayaram, B., Rao, C. J. M.: On the distributivity of implication operators over $ T $ and $ S $ norms. IEEE Trans. Fuzzy Syst. 12 (2004), 194-198. DOI 10.1109/tfuzz.2004.825075
[19] Karaçal, F., Ince, M. A., Mesiar, R.: Nullnorms on bounded lattices. Inf.Sci. 325 (2015), 227-236. DOI 10.1016/j.ins.2015.06.052 | MR 3392300
[20] Karaçal, F., Kesicioğlu, M. N.: A T-partial order obtained from t-norms. Kybernetika 47 (2011), 300-314. MR 2828579 | Zbl 1245.03086
[21] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000. DOI 10.1007/978-94-015-9540-7 | MR 1790096 | Zbl 1087.20041
[22] Mas, M., Mayor, G., Torrens, J.: t-operators. Int. J. Uncertain. Fuzz. Knowl.-Based Syst. 7 (1999), 31-50. DOI 10.1142/s0218488599000039 | MR 1691482 | Zbl 1005.03047
[23] Mas, M., Mayor, G., Torrens, J.: The distributivity condition for uninorms and t-operators. Fuzzy Sets Syst. 128 (2002), 209-225. DOI 10.1016/s0165-0114(01)00123-3 | MR 1908427 | Zbl 1005.03047
[24] Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math. 10 (1960), 313-334. DOI 10.2140/pjm.1960.10.313 | MR 0115153 | Zbl 0136.39301
Partner of
EuDML logo