[1] Atanassov, K.:
Intuitionistic Fuzzy Sets: Theory and Applications. Physica-Verlag, Heidelberg 1999.
MR 1718470
[2] Barbieri, G.:
On Dieudonné's boundedness theorem. Boll. Un. Mat. Ital. II 9 (2009), 343-348.
MR 2537274
[4] Barbieri, G., Boccuto, A.:
On extensions of $k$-subadditive lattice group-valued capacities. Italian J. Pure Appl. Math. 37 (2017), 387-408.
MR 3622941
[5] Barbieri, G., Boccuto, A.:
On some properties of $k$-subadditive lattice group-valued capacities. Math. Slovaca 67 (2017), 1387-1408.
DOI 10.1515/ms-2017-0059 |
MR 3739367
[6] Boccuto, A.:
Dieudonné-type theorems for means with values in Riesz spaces. Tatra Mt. Math. Publ. 8 (1996), 29-42.
MR 1475257
[7] Boccuto, A.:
Integration in Riesz spaces with respect to $(D)$-convergence. Tatra Mt. Math. Publ. 10 (1997), 33-54.
MR 1469280
[8] Boccuto, A.: Egorov property and weak $\sigma$-distributivity in Riesz spaces. Acta Math. (Nitra) 6 (2003), 61-66.
[9] Boccuto, A., Candeloro, D.:
Uniform $(s)$-boundedness and convergece results for measures with values in complete $(\ell)$-groups. J. Math. Anal. Appl. 265 (2002), 170-194.
DOI 10.1006/jmaa.2001.7715 |
MR 1874264
[11] Boccuto, A., Candeloro, D.:
Uniform boundedness theorems in Riesz spaces. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 52 (2004), 369-382.
MR 2152821
[12] Boccuto, A., Candeloro, D.:
Some new results about Brooks-Jewett and Dieudonné-type theorems in $(\ell)$-groups. Kybernetika 46 (2010), 1049-1060.
MR 2797426
[13] Boccuto, A., Candeloro, D.:
Uniform $(s)$-boundedness and regularity for $(\ell)$-group-valued measures. Cent. Eur. J. Math. 9 (2) (2011), 433-440.
DOI 10.2478/s11533-010-0097-1 |
MR 2772437
[14] Boccuto, A., Dimitriou, X.:
Ideal limit theorems and their equivalence in $(\ell)$-group setting. J. Math. Research 5 (2013), 43-60.
DOI 10.5539/jmr.v5n2p42
[15] Boccuto, A., Dimitriou, X.:
Limit theorems for topological group-valued maesures. Acta Math. (Nitra) 16 (2013), 37-43.
MR 3365401
[17] Boccuto, A., Dimitriou, X.:
Limit theorems for $k$-subadditive lattice group-valued capacities in the filter convergence setting. Tatra Mt. Math. Publ. 65 (2016), 1-21.
DOI 10.1515/tmmp-2016-0001 |
MR 3529302
[18] Boccuto, A., Dimitriou, X.:
Matrix theorems and interchange for lattice group-valued series in the filter convergence setting. Bull. Hellenic Math. Soc. 59 (2016), 39-55.
MR 3602294
[19] Boccuto, A., Dimitriou, X.:
Limit theorems for lattice group-valued $k$-triangular set functions. In: Proc. 33rd PanHellenic Conference on Mathematical Education, Chania 2016, pp. 1-10.
MR 3825621
[20] Boccuto, A., Dimitriou, X.:
Schur-type theorems for $k$-triangular lattice group-valued set functions with respect to filter convergence. Appl. Math. Sci. 11 (2017), 2825-2833.
DOI 10.12988/ams.2017.710298 |
MR 3825621
[21] Boccuto, A., Dimitriou, X.: Non-Additive Lattice Group-Valued Set Functions And Limit Theorems. Lambert Acad. Publ., Mauritius 2017.
[22] Boccuto, A., Dimitriou, X.:
Equivalence between limit theorems for lattice group-valued $k$-triangular set functions. Mediterranean J. Math. 15 (2018), 1-20.
DOI 10.1007/s00009-018-1222-9 |
MR 3825621
[23] Boccuto, A., Dimitriou, X.:
Filter exhaustiveness and filter limit theorems for $k$-triangular lattice group-valued set functions. Rend. Lincei Mat. Appl. (2019), in press.
MR 3825621
[24] Boccuto, A., Dimitriou, X., Papanastassiou, N.:
Some versions of limit and Dieudonné-type theorems with respect to filter convergence for $(\ell)$-group-valued measures. Cent. Eur. J. Math. 9 (2011), 1298-1311.
DOI 10.2478/s11533-011-0083-2 |
MR 2836722
[25] Boccuto, A., Dimitriou, X., Papanastassiou, N.: Uniform boundedness principle, Banach-Steinhaus and approximation theorems for filter convergence in Riesz spaces. In: Proc. International Conference on Topology and its Applications ICTA 2011, Cambridge Sci. Publ. 2012, pp. 45-58.
[26] Boccuto, A., Dimitriou, X., Papanastassiou, N.:
Schur lemma and limit theorems in lattice groups with respect to filters. Math. Slovaca 62 (2012), 1145-1166.
DOI 10.2478/s12175-012-0070-5 |
MR 3003783
[27] Boccuto, A., Riečan, B., Sambucini, A. R.:
On the product of $M$-measures in $(\ell)$-groups. Australian J. Math. Anal. Appl. 7 (2010), 9, 1-8.
MR 2601882
[30] Candeloro, D.:
On the Vitali-Hahn-Saks, Dieudonné and Nikodým theorems. (In Italian). Rend. Circ. Mat. Palermo Ser. II Suppl. 8 (1985), 439-445.
MR 0881420
[31] Candeloro, D., Letta, G.:
On Vitali-Hahn-Saks and Dieudonné theorems. (In Italian). Rend. Accad. Naz. Sci. XL Mem. Mat. 9 (1985), 203-213.
MR 0899250
[32] Candeloro, D., Sambucini, A. R.:
Filter convergence and decompositions for vector lattice-valued measures. Mediterranean J. Math. 12 (2015), 621-637.
DOI 10.1007/s00009-014-0431-0 |
MR 3376802
[33] Cavaliere, P., Lucia, P. de:
Regularity and exhaustivity for finitely additive functions. The Dieudonné's convergence theorem. Sci. Math. Japan. 66 (2007), 313-323.
MR 2361636
[34] Dieudonné, J.:
Sur la convergence des suites de mesures de Radon. An. Acad. Brasil. Ci. 23 (1951), 21-38.
MR 0042496
[35] Dobrakov, I.:
On submeasures I. Dissertationes Math. 112 (1974), 5-35.
MR 0367140
[36] Dugundji, J.:
Topology. Allyn and Bacon Inc., Boston 1966.
MR 0193606
[40] Pap, E.:
The Vitali-Hahn-Saks Theorems for $k$-triangular set functions. Atti Sem. Mat. Fis. Univ. Modena 35 (1987), 21-32.
MR 0922985
[41] Pap, E.:
Null-Additive Set Functions. Kluwer Acad. Publishers/Ister Science, Dordrecht/Bratislava 1995.
MR 1368630
[44] Schachermayer, W.:
On some classical measure-theoretic theorems for non-sigma-complete Boolean algebras. Dissertationes Math. 214 (1982), 1-33.
MR 0673286
[48] Vulikh, B. Z.:
Introduction to the Theory of Partially Ordered Spaces. Wolters-Noordhoff Sci. Publ., Groningen 1967.
MR 0224522