Previous |  Up |  Next

Article

Keywords:
lattice group; $(D)$-convergence; $k$-triangular set function; $(s)$-bounded set function; Fremlin lemma; limit theorem; Brooks–Jewett theorem; Dieudonné theorem; Nikodým boundedness theorem
Summary:
Some versions of Dieudonné-type convergence and uniform boundedness theorems are proved, for $k$-triangular and regular lattice group-valued set functions. We use sliding hump techniques and direct methods. We extend earlier results, proved in the real case. Furthermore, we pose some open problems.
References:
[1] Atanassov, K.: Intuitionistic Fuzzy Sets: Theory and Applications. Physica-Verlag, Heidelberg 1999. MR 1718470
[2] Barbieri, G.: On Dieudonné's boundedness theorem. Boll. Un. Mat. Ital. II 9 (2009), 343-348. MR 2537274
[3] Barbieri, G.: On the Dieudonné theorem. Sci. Math. Japon. 44 (2009), 403-408. DOI 10.1007/bf00966618 | MR 2562049
[4] Barbieri, G., Boccuto, A.: On extensions of $k$-subadditive lattice group-valued capacities. Italian J. Pure Appl. Math. 37 (2017), 387-408. MR 3622941
[5] Barbieri, G., Boccuto, A.: On some properties of $k$-subadditive lattice group-valued capacities. Math. Slovaca 67 (2017), 1387-1408. DOI 10.1515/ms-2017-0059 | MR 3739367
[6] Boccuto, A.: Dieudonné-type theorems for means with values in Riesz spaces. Tatra Mt. Math. Publ. 8 (1996), 29-42. MR 1475257
[7] Boccuto, A.: Integration in Riesz spaces with respect to $(D)$-convergence. Tatra Mt. Math. Publ. 10 (1997), 33-54. MR 1469280
[8] Boccuto, A.: Egorov property and weak $\sigma$-distributivity in Riesz spaces. Acta Math. (Nitra) 6 (2003), 61-66.
[9] Boccuto, A., Candeloro, D.: Uniform $(s)$-boundedness and convergece results for measures with values in complete $(\ell)$-groups. J. Math. Anal. Appl. 265 (2002), 170-194. DOI 10.1006/jmaa.2001.7715 | MR 1874264
[10] Boccuto, A., Candeloro, D.: Dieudonné-type theorems for set functions with values in $(\ell)$-groups. Real Anal. Exchange 27 (2002), 473-484. DOI 10.14321/realanalexch.27.2.0473 | MR 1922663
[11] Boccuto, A., Candeloro, D.: Uniform boundedness theorems in Riesz spaces. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 52 (2004), 369-382. MR 2152821
[12] Boccuto, A., Candeloro, D.: Some new results about Brooks-Jewett and Dieudonné-type theorems in $(\ell)$-groups. Kybernetika 46 (2010), 1049-1060. MR 2797426
[13] Boccuto, A., Candeloro, D.: Uniform $(s)$-boundedness and regularity for $(\ell)$-group-valued measures. Cent. Eur. J. Math. 9 (2) (2011), 433-440. DOI 10.2478/s11533-010-0097-1 | MR 2772437
[14] Boccuto, A., Dimitriou, X.: Ideal limit theorems and their equivalence in $(\ell)$-group setting. J. Math. Research 5 (2013), 43-60. DOI 10.5539/jmr.v5n2p42
[15] Boccuto, A., Dimitriou, X.: Limit theorems for topological group-valued maesures. Acta Math. (Nitra) 16 (2013), 37-43. MR 3365401
[16] Boccuto, A., Dimitriou, X.: Convergence Theorems for Lattice Group-Valued Measures. Bentham Science Publ., Sharjah 2015. DOI 10.2174/97816810800931150101 | MR 3478113
[17] Boccuto, A., Dimitriou, X.: Limit theorems for $k$-subadditive lattice group-valued capacities in the filter convergence setting. Tatra Mt. Math. Publ. 65 (2016), 1-21. DOI 10.1515/tmmp-2016-0001 | MR 3529302
[18] Boccuto, A., Dimitriou, X.: Matrix theorems and interchange for lattice group-valued series in the filter convergence setting. Bull. Hellenic Math. Soc. 59 (2016), 39-55. MR 3602294
[19] Boccuto, A., Dimitriou, X.: Limit theorems for lattice group-valued $k$-triangular set functions. In: Proc. 33rd PanHellenic Conference on Mathematical Education, Chania 2016, pp. 1-10. MR 3825621
[20] Boccuto, A., Dimitriou, X.: Schur-type theorems for $k$-triangular lattice group-valued set functions with respect to filter convergence. Appl. Math. Sci. 11 (2017), 2825-2833. DOI 10.12988/ams.2017.710298 | MR 3825621
[21] Boccuto, A., Dimitriou, X.: Non-Additive Lattice Group-Valued Set Functions And Limit Theorems. Lambert Acad. Publ., Mauritius 2017.
[22] Boccuto, A., Dimitriou, X.: Equivalence between limit theorems for lattice group-valued $k$-triangular set functions. Mediterranean J. Math. 15 (2018), 1-20. DOI 10.1007/s00009-018-1222-9 | MR 3825621
[23] Boccuto, A., Dimitriou, X.: Filter exhaustiveness and filter limit theorems for $k$-triangular lattice group-valued set functions. Rend. Lincei Mat. Appl. (2019), in press. MR 3825621
[24] Boccuto, A., Dimitriou, X., Papanastassiou, N.: Some versions of limit and Dieudonné-type theorems with respect to filter convergence for $(\ell)$-group-valued measures. Cent. Eur. J. Math. 9 (2011), 1298-1311. DOI 10.2478/s11533-011-0083-2 | MR 2836722
[25] Boccuto, A., Dimitriou, X., Papanastassiou, N.: Uniform boundedness principle, Banach-Steinhaus and approximation theorems for filter convergence in Riesz spaces. In: Proc. International Conference on Topology and its Applications ICTA 2011, Cambridge Sci. Publ. 2012, pp. 45-58.
[26] Boccuto, A., Dimitriou, X., Papanastassiou, N.: Schur lemma and limit theorems in lattice groups with respect to filters. Math. Slovaca 62 (2012), 1145-1166. DOI 10.2478/s12175-012-0070-5 | MR 3003783
[27] Boccuto, A., Riečan, B., Sambucini, A. R.: On the product of $M$-measures in $(\ell)$-groups. Australian J. Math. Anal. Appl. 7 (2010), 9, 1-8. MR 2601882
[28] Boccuto, A., Riečan, B., Vrábelová, M.: Kurzweil-Henstock Integral in Riesz Spaces. Bentham Science Publ., Sharjah 2009. DOI 10.2174/97816080500311090101
[29] Brooks, J. K., Chacon, R. V.: Continuity and compactness of measures. Adv. Math. 37 (1980), 16-26. DOI 10.1016/0001-8708(80)90023-7 | MR 0585896
[30] Candeloro, D.: On the Vitali-Hahn-Saks, Dieudonné and Nikodým theorems. (In Italian). Rend. Circ. Mat. Palermo Ser. II Suppl. 8 (1985), 439-445. MR 0881420
[31] Candeloro, D., Letta, G.: On Vitali-Hahn-Saks and Dieudonné theorems. (In Italian). Rend. Accad. Naz. Sci. XL Mem. Mat. 9 (1985), 203-213. MR 0899250
[32] Candeloro, D., Sambucini, A. R.: Filter convergence and decompositions for vector lattice-valued measures. Mediterranean J. Math. 12 (2015), 621-637. DOI 10.1007/s00009-014-0431-0 | MR 3376802
[33] Cavaliere, P., Lucia, P. de: Regularity and exhaustivity for finitely additive functions. The Dieudonné's convergence theorem. Sci. Math. Japan. 66 (2007), 313-323. MR 2361636
[34] Dieudonné, J.: Sur la convergence des suites de mesures de Radon. An. Acad. Brasil. Ci. 23 (1951), 21-38. MR 0042496
[35] Dobrakov, I.: On submeasures I. Dissertationes Math. 112 (1974), 5-35. MR 0367140
[36] Dugundji, J.: Topology. Allyn and Bacon Inc., Boston 1966. MR 0193606
[37] Fremlin, D. H.: A direct proof of the Matthes-Wright integral extension theorem. J. London Math. Soc. 11 (1975), 276-284. DOI 10.1112/jlms/s2-11.3.276 | MR 0380345
[38] Guariglia, E.: On Dieudonné's boundedness theorem. J. Math. Anal. Appl. 145 (1990), 447-454. DOI 10.1016/0022-247x(90)90412-9 | MR 1038169
[39] Pap, E.: A generalization of a Dieudonné theorem for $k$-triangular set functions. Acta Sci. Math. 50 (1986), 159-167. DOI 10.1007/bf01874617 | MR 0862190
[40] Pap, E.: The Vitali-Hahn-Saks Theorems for $k$-triangular set functions. Atti Sem. Mat. Fis. Univ. Modena 35 (1987), 21-32. MR 0922985
[41] Pap, E.: Null-Additive Set Functions. Kluwer Acad. Publishers/Ister Science, Dordrecht/Bratislava 1995. MR 1368630
[42] Riečan, B., Neubrunn, T.: Integral, Measure, and Ordering. Kluwer Acad. Publ./Ister Science, Dordrecht/Bratislava 1997. DOI 10.1007/978-94-015-8919-2 | MR 1489521 | Zbl 0916.28001
[43] Saeki, S.: The Vitali-Hahn-Saks theorem and measuroids. Proc. Amer. Math. Soc. 114 (1992), 775-782. DOI 10.1090/s0002-9939-1992-1088446-8 | MR 1088446
[44] Schachermayer, W.: On some classical measure-theoretic theorems for non-sigma-complete Boolean algebras. Dissertationes Math. 214 (1982), 1-33. MR 0673286
[45] Stein, J. D., Jr.: A uniform-boundedness theorem for measures. Michigan Math. J. 19 (1972), 161-165. DOI 10.1307/mmj/1029000848 | MR 0299746
[46] Swartz, C.: The Nikodým boundedness Theorem for lattice-valued measures. Arch. Math. 53 (1989), 390-393. DOI 10.1007/bf01195219 | MR 1016003
[47] Ventriglia, F.: Dieudonné's theorem for non-additive set functions. J. Math. Anal. Appl. 367 (2010), 296-303. DOI 10.1016/j.jmaa.2010.01.017 | MR 2600399
[48] Vulikh, B. Z.: Introduction to the Theory of Partially Ordered Spaces. Wolters-Noordhoff Sci. Publ., Groningen 1967. MR 0224522
Partner of
EuDML logo