Previous |  Up |  Next

Article

Keywords:
local cohomology module; Matlis dual functor, filter regular sequence
Summary:
Let $(R,\mathfrak m)$ be a commutative Noetherian local ring, $\mathfrak a$ be an ideal of $R$ and $M$ a finitely generated $R$-module such that $\mathfrak a M\neq M$ and ${\rm cd}(\mathfrak a,M) - {\rm grade}(\mathfrak a,M)\leq 1$, where ${\rm cd}(\mathfrak a,M)$ is the cohomological dimension of $M$ with respect to $\mathfrak a$ and ${\rm grade}(\mathfrak a,M)$ is the $M$-grade of $\mathfrak a$. Let $D(-) := {\rm Hom}_R(-,E)$ be the Matlis dual functor, where $E := E(R/\mathfrak m)$ is the injective hull of the residue field $R/\mathfrak m$. We show that there exists the following long exact sequence \begin {eqnarray*} 0 \longrightarrow & H^{n-2}_{\mathfrak a}(D(H^{n-1}_{\mathfrak a}(M))) \longrightarrow H^{n}_{\mathfrak a}(D(H^{n}_{\mathfrak a}(M))) \longrightarrow D(M) \\ \longrightarrow & H^{n-1}_{\mathfrak a}(D(H^{n-1}_{\mathfrak a}(M))) \longrightarrow H^{n+1}_{\mathfrak a}(D(H^{n}_{\mathfrak a}(M))) \\ \longrightarrow & H^{n}_{\mathfrak a}(D(H^{n-1}_{(x_1, \ldots ,x_{n-1})}(M))) \longrightarrow H^{n}_{\mathfrak a}(D(H^{n-1}_\mathfrak (M))) \longrightarrow \ldots , \end {eqnarray*} where $n:={\rm cd}(\mathfrak a,M)$ is a non-negative integer, $x_1, \ldots ,x_{n-1}$ is a regular sequence in $\mathfrak a$ on $M$ and, for an $R$-module $L$, $H^i_{\mathfrak a}(L)$ is the $i$th local cohomology module of $L$ with respect to $\mathfrak a$.
References:
[1] Brodmann, M. P., Sharp, R. Y.: Local Cohomology. An Algebraic Introduction with Geometric Applications. Cambridge Studies in Advanced Mathematics 136, Cambridge University Press, Cambridge (2013). DOI 10.1017/CBO9781139044059 | MR 3014449 | Zbl 1263.13014
[2] Hellus, M.: On the associated primes of Matlis duals of top local cohomology modules. Commun. Algebra 33 (2005), 3997-4009. DOI 10.1080/00927870500261314 | MR 2183976 | Zbl 1101.13026
[3] Hellus, M.: Local Cohomology and Matlis Duality. Habilitationsschrift, Leipzing Available at https://www.uni-regensburg.de/mathematik/mathematik-hellus/ medien/habilitationsschriftohnedeckblatt.pdf (2006).
[4] Hellus, M.: Finiteness properties of duals of local cohomology modules. Commun. Algebra 35 (2007), 3590-3602. DOI 10.1080/00927870701512069 | MR 2362672 | Zbl 1129.13018
[5] Hellus, M., Schenzel, P.: Notes on local cohomology and duality. J. Algebra 401 (2014), 48-61. DOI 10.1016/j.jalgebra.2013.12.006 | MR 3151247 | Zbl 1304.13033
[6] Khashyarmanesh, K.: On the finiteness properties of extension and torsion functors of local cohomology modules. Proc. Am. Math. Soc. 135 (2007), 1319-1327. DOI 10.1090/s0002-9939-06-08664-3 | MR 2276640 | Zbl 1111.13016
[7] Khashyarmanesh, K.: On the Matlis duals of local cohomology modules. Arch. Math. 88 (2007), 413-418. DOI 10.1007/s00013-006-1115-1 | MR 2316886 | Zbl 1112.13020
[8] Khashyarmanesh, K., Salarian, S.: Filter regular sequences and the finiteness of local cohomology modules. Commun. Algebra 26 (1998), 2483-2490. DOI 10.1080/00927879808826293 | MR 1627876 | Zbl 0909.13007
[9] Khashyarmanesh, K., Salarian, S.: On the associated primes of local cohomology modules. Commun. Algebra 27 (1999), 6191-6198. DOI 10.1080/00927879908826816 | MR 1726302 | Zbl 0940.13013
[10] Schenzel, P.: Matlis duals of local cohomology modules and their endomorphism rings. Arch. Math. 95 (2010), 115-123. DOI 10.1007/s00013-010-0149-6 | MR 2674247 | Zbl 1200.13028
[11] Schenzel, P., Trung, N. V., Cuong, N. T.: Verallgemeinerte Cohen-Macaulay-Moduln. Math. Nachr. 85 (1978), 57-73 German. DOI 10.1002/mana.19780850106 | MR 0517641 | Zbl 0398.13014
[12] Stückrad, J., Vogel, W.: Buchsbaum Rings and Applications. An Interaction Between Algebra, Geometry and Topology. Springer, Berlin (1986). MR 0881220 | Zbl 0606.13018
Partner of
EuDML logo