Previous |  Up |  Next

Article

Keywords:
right Gorenstein subcategory; self-orthogonal subcategory; relative projective dimension; cotorsion pair; kernel; (weak) Auslander-Buchweitz context
Summary:
We introduce the right (left) Gorenstein subcategory relative to an additive subcategory $\mathscr {C}$ of an abelian category $\mathscr {A}$, and prove that the right Gorenstein subcategory $r\mathcal {G}(\mathscr {C})$ is closed under extensions, kernels of epimorphisms, direct summands and finite direct sums. When $\mathscr {C}$ is self-orthogonal, we give a characterization for objects in $r\mathcal {G}(\mathscr {C})$, and prove that any object in $\mathscr {A}$ with finite $r\mathcal {G}(\mathscr {C})$-projective dimension is isomorphic to a kernel (or a cokernel) of a morphism from an object in $\mathscr {A}$ with finite $\mathscr {C}$-projective dimension to an object in $r\mathcal {G}(\mathscr {C})$. As an application, we obtain a weak Auslander-Buchweitz context related to the kernel of a hereditary cotorsion pair in $\mathscr {A}$ having enough injectives.
References:
[1] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory. London Mathematical Society Student Texts 65, Cambridge University Press, Cambridge (2006). DOI 10.1017/CBO9780511614309 | MR 2197389 | Zbl 1092.16001
[2] Auslander, M., Bridger, M.: Stable module theory. Mem. Am. Math. Soc. 94 (1969), 146 pages. DOI 10.1090/memo/0094 | MR 0269685 | Zbl 0204.36402
[3] Auslander, M., Buchweitz, R.-O.: The homological theory of maximal Cohen-Macaulay approximations. Mém. Soc. Math. Fr., Nouv. Sér. 38 (1989), 5-37. DOI 10.24033/msmf.339 | MR 1044344 | Zbl 0697.13005
[4] Avramov, L. L., Martsinkovsky, A.: Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension. Proc. Lond. Math. Soc., III. Ser. 85 (2002), 393-440. DOI 10.1112/S0024611502013527 | MR 1912056 | Zbl 1047.16002
[5] Cartan, H., Eilenberg, S.: Homological Algebra. Princeton Landmarks in Mathematics, Princeton University Press, Princeton (1999). DOI 10.1515/9781400883844 | MR 1731415 | Zbl 0933.18001
[6] Christensen, L. W.: Gorenstein Dimensions. Lecture Notes in Mathematics 1747, Springer, Berlin (2000). DOI 10.1007/BFb0103980 | MR 1799866 | Zbl 0965.13010
[7] Christensen, L. W., Foxby, H.-B., Holm, H.: Beyond totally reflexive modules and back. A survey on Gorenstein dimensions. Commutative Algebra: Noetherian and Non-Noetherian Perspectives M. Fontana et al. Springer, New York (2011), 101-143. DOI 10.1007/978-1-4419-6990-3_5 | MR 2762509 | Zbl 1225.13019
[8] Christensen, L. W., Frankild, A., Holm, H.: On Gorenstein projective, injective and flat dimensions---a functorial description with applications. J. Algebra 302 (2006), 231-279. DOI 10.1016/j.jalgebra.2005.12.007 | MR 2236602 | Zbl 1104.13008
[9] Christensen, L. W., Iyengar, S.: Gorenstein dimension of modules over homomorphisms. J. Pure Appl. Algebra 208 (2007), 177-188. DOI 10.1016/j.jpaa.2005.12.005 | MR 2269838 | Zbl 1105.13014
[10] Enochs, E. E., Jenda, O. M. G.: Gorenstein injective and projective modules. Math. Z. 220 (1995), 611-633. DOI 10.1007/BF02572634 | MR 1363858 | Zbl 0845.16005
[11] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. de Gruyter Expositions in Mathematics 30, de Gruyter, Berlin (2000). DOI 10.1515/9783110803662 | MR 2857612 | Zbl 0952.13001
[12] Enochs, E. E., Jenda, O. M. G., López-Ramos, J. A.: Covers and envelopes by $V$-Gorenstein modules. Commun. Algebra 33 (2005), 4705-4717. DOI 10.1080/00927870500328766 | MR 2188336 | Zbl 1087.16002
[13] Enochs, E. E., Oyonarte, L.: Covers, Envelopes and Cotorsion Theories. Nova Science Publishers, New York (2002).
[14] Geng, Y., Ding, N.: $\mathcal{W}$-Gorenstein modules. J. Algebra 325 (2011), 132-146. DOI 10.1016/j.jalgebra.2010.09.040 | MR 2745532 | Zbl 1216.18015
[15] Hashimoto, M.: Auslander-Buchweitz Approximations of Equivariant Modules. London Mathematical Society Lecture Note Series 282, Cambridge University Press, Cambridge (2000). DOI 10.1017/CBO9780511565762 | MR 1797672 | Zbl 0993.13007
[16] Holm, H.: Gorenstein homological dimensions. J. Pure Appl. Algebra 189 (2004), 167-193. DOI 10.1016/j.jpaa.2003.11.007 | MR 2038564 | Zbl 1050.16003
[17] Huang, Z.: Proper resolutions and Gorenstein categories. J. Algebra 393 (2013), 142-169. DOI 10.1016/j.jalgebra.2013.07.008 | MR 3090064 | Zbl 1291.18022
[18] Liu, Z., Huang, Z., Xu, A.: Gorenstein projective dimension relative to a semidualizing bimodule. Commun. Algebra 41 (2013), 1-18. DOI 10.1080/00927872.2011.602782 | MR 3010518 | Zbl 1287.16015
[19] Rotman, J. J.: An Introduction to Homological Algebra. Universitext, Springer, New York (2009). DOI 10.1007/b98977 | MR 2455920 | Zbl 1157.18001
[20] Sather-Wagstaff, S., Sharif, T., White, D.: Stability of Gorenstein categories. J. Lond. Math. Soc., II. Ser. 77 (2008), 481-502. DOI 10.1112/jlms/jdm124 | MR 2400403 | Zbl 1140.18010
[21] Tang, X., Huang, Z.: Homological aspects of the dual Auslander transpose. Forum Math. 27 (2015), 3717-3743. DOI 10.1515/forum-2013-0196 | MR 3420357 | Zbl 1405.16004
[22] Tang, X., Huang, Z.: Homological aspects of the adjoint cotranspose. Colloq. Math. 150 (2017), 293-311. DOI 10.4064/cm7121-12-2016 | MR 3719463 | Zbl 1397.18032
Partner of
EuDML logo