Previous |  Up |  Next

Article

Title: One-sided Gorenstein subcategories (English)
Author: Song, Weiling
Author: Zhao, Tiwei
Author: Huang, Zhaoyong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 2
Year: 2020
Pages: 483-504
Summary lang: English
.
Category: math
.
Summary: We introduce the right (left) Gorenstein subcategory relative to an additive subcategory $\mathscr {C}$ of an abelian category $\mathscr {A}$, and prove that the right Gorenstein subcategory $r\mathcal {G}(\mathscr {C})$ is closed under extensions, kernels of epimorphisms, direct summands and finite direct sums. When $\mathscr {C}$ is self-orthogonal, we give a characterization for objects in $r\mathcal {G}(\mathscr {C})$, and prove that any object in $\mathscr {A}$ with finite $r\mathcal {G}(\mathscr {C})$-projective dimension is isomorphic to a kernel (or a cokernel) of a morphism from an object in $\mathscr {A}$ with finite $\mathscr {C}$-projective dimension to an object in $r\mathcal {G}(\mathscr {C})$. As an application, we obtain a weak Auslander-Buchweitz context related to the kernel of a hereditary cotorsion pair in $\mathscr {A}$ having enough injectives. (English)
Keyword: right Gorenstein subcategory
Keyword: self-orthogonal subcategory
Keyword: relative projective dimension
Keyword: cotorsion pair
Keyword: kernel
Keyword: (weak) Auslander-Buchweitz context
MSC: 16E10
MSC: 18G10
MSC: 18G25
idZBL: 07217147
idMR: MR4111855
DOI: 10.21136/CMJ.2019.0385-18
.
Date available: 2020-06-17T12:35:30Z
Last updated: 2022-07-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148241
.
Reference: [1] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory.London Mathematical Society Student Texts 65, Cambridge University Press, Cambridge (2006). Zbl 1092.16001, MR 2197389, 10.1017/CBO9780511614309
Reference: [2] Auslander, M., Bridger, M.: Stable module theory.Mem. Am. Math. Soc. 94 (1969), 146 pages. Zbl 0204.36402, MR 0269685, 10.1090/memo/0094
Reference: [3] Auslander, M., Buchweitz, R.-O.: The homological theory of maximal Cohen-Macaulay approximations.Mém. Soc. Math. Fr., Nouv. Sér. 38 (1989), 5-37. Zbl 0697.13005, MR 1044344, 10.24033/msmf.339
Reference: [4] Avramov, L. L., Martsinkovsky, A.: Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension.Proc. Lond. Math. Soc., III. Ser. 85 (2002), 393-440. Zbl 1047.16002, MR 1912056, 10.1112/S0024611502013527
Reference: [5] Cartan, H., Eilenberg, S.: Homological Algebra.Princeton Landmarks in Mathematics, Princeton University Press, Princeton (1999). Zbl 0933.18001, MR 1731415, 10.1515/9781400883844
Reference: [6] Christensen, L. W.: Gorenstein Dimensions.Lecture Notes in Mathematics 1747, Springer, Berlin (2000). Zbl 0965.13010, MR 1799866, 10.1007/BFb0103980
Reference: [7] Christensen, L. W., Foxby, H.-B., Holm, H.: Beyond totally reflexive modules and back. A survey on Gorenstein dimensions.Commutative Algebra: Noetherian and Non-Noetherian Perspectives M. Fontana et al. Springer, New York (2011), 101-143. Zbl 1225.13019, MR 2762509, 10.1007/978-1-4419-6990-3_5
Reference: [8] Christensen, L. W., Frankild, A., Holm, H.: On Gorenstein projective, injective and flat dimensions---a functorial description with applications.J. Algebra 302 (2006), 231-279. Zbl 1104.13008, MR 2236602, 10.1016/j.jalgebra.2005.12.007
Reference: [9] Christensen, L. W., Iyengar, S.: Gorenstein dimension of modules over homomorphisms.J. Pure Appl. Algebra 208 (2007), 177-188. Zbl 1105.13014, MR 2269838, 10.1016/j.jpaa.2005.12.005
Reference: [10] Enochs, E. E., Jenda, O. M. G.: Gorenstein injective and projective modules.Math. Z. 220 (1995), 611-633. Zbl 0845.16005, MR 1363858, 10.1007/BF02572634
Reference: [11] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra.de Gruyter Expositions in Mathematics 30, de Gruyter, Berlin (2000). Zbl 0952.13001, MR 2857612, 10.1515/9783110803662
Reference: [12] Enochs, E. E., Jenda, O. M. G., López-Ramos, J. A.: Covers and envelopes by $V$-Gorenstein modules.Commun. Algebra 33 (2005), 4705-4717. Zbl 1087.16002, MR 2188336, 10.1080/00927870500328766
Reference: [13] Enochs, E. E., Oyonarte, L.: Covers, Envelopes and Cotorsion Theories.Nova Science Publishers, New York (2002).
Reference: [14] Geng, Y., Ding, N.: $\mathcal{W}$-Gorenstein modules.J. Algebra 325 (2011), 132-146. Zbl 1216.18015, MR 2745532, 10.1016/j.jalgebra.2010.09.040
Reference: [15] Hashimoto, M.: Auslander-Buchweitz Approximations of Equivariant Modules.London Mathematical Society Lecture Note Series 282, Cambridge University Press, Cambridge (2000). Zbl 0993.13007, MR 1797672, 10.1017/CBO9780511565762
Reference: [16] Holm, H.: Gorenstein homological dimensions.J. Pure Appl. Algebra 189 (2004), 167-193. Zbl 1050.16003, MR 2038564, 10.1016/j.jpaa.2003.11.007
Reference: [17] Huang, Z.: Proper resolutions and Gorenstein categories.J. Algebra 393 (2013), 142-169. Zbl 1291.18022, MR 3090064, 10.1016/j.jalgebra.2013.07.008
Reference: [18] Liu, Z., Huang, Z., Xu, A.: Gorenstein projective dimension relative to a semidualizing bimodule.Commun. Algebra 41 (2013), 1-18. Zbl 1287.16015, MR 3010518, 10.1080/00927872.2011.602782
Reference: [19] Rotman, J. J.: An Introduction to Homological Algebra.Universitext, Springer, New York (2009). Zbl 1157.18001, MR 2455920, 10.1007/b98977
Reference: [20] Sather-Wagstaff, S., Sharif, T., White, D.: Stability of Gorenstein categories.J. Lond. Math. Soc., II. Ser. 77 (2008), 481-502. Zbl 1140.18010, MR 2400403, 10.1112/jlms/jdm124
Reference: [21] Tang, X., Huang, Z.: Homological aspects of the dual Auslander transpose.Forum Math. 27 (2015), 3717-3743. Zbl 1405.16004, MR 3420357, 10.1515/forum-2013-0196
Reference: [22] Tang, X., Huang, Z.: Homological aspects of the adjoint cotranspose.Colloq. Math. 150 (2017), 293-311. Zbl 1397.18032, MR 3719463, 10.4064/cm7121-12-2016
.

Files

Files Size Format View
CzechMathJ_70-2020-2_12.pdf 353.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo