Previous |  Up |  Next

Article

Keywords:
Euler's phi function; Dedekind's psi function; inequalities
Summary:
For positive integers $n$, Euler's phi function and Dedekind's psi function are given by $$ \phi (n)= n \prod _{\substack { p\mid n \\ p \ {\rm prime}}} \Bigl (1-\frac {1}{p}\Bigr ) \quad \mbox {and} \quad \psi (n)=n\prod _{\substack { p\mid n \\ p \ {\rm prime}}} \Bigl (1+\frac {1}{p}\Bigr ), $$ respectively. We prove that for all $n\geq 2$ we have $$ \Bigl (1-\frac {1}{n}\Bigr )^{n-1}\Bigl (1+\frac {1}{n}\Bigr )^{n+1} \leq \Bigl (\frac {\phi (n)}{n} \Bigr )^{\phi (n)} \Bigl ( \frac {\psi (n)}{n}\Bigr )^{\psi (n)} $$ and $$ \Bigl (\frac {\phi (n)}{n} \Bigr )^{\psi (n)} \Bigl ( \frac {\psi (n)}{n}\Bigr )^{\phi (n)} \leq \Bigl (1-\frac {1}{n}\Bigr )^{n+1}\Bigl (1+\frac {1}{n}\Bigr )^{n-1}. $$ \endgraf The sign of equality holds if and only if $n$ is a prime. The first inequality refines results due to Atanassov (2011) and Kannan \& Srikanth (2013).
References:
[1] Apostol, T. M.: Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics, Springer, New York (1976). DOI 10.1007/978-1-4757-5579-4 | MR 0434929 | Zbl 0335.10001
[2] Atanassov, K. T.: Note on $\varphi$, $\psi$ and $\sigma$-functions III. Notes Number Theory Discrete Math. 17 (2011), 13-14. MR 1418823 | Zbl 1259.11009
[3] Kannan, V., Srikanth, R.: Note on $\varphi$ and $\psi$ functions. Notes Number Theory Discrete Math. 19 (2013), 19-21. Zbl 1329.11006
[4] Mitrinović, D. S., Sándor, J., Crstici, B.: Handbook of Number Theory. Mathematics and Its Applications 351, Kluwer, Dordrecht (1996). DOI 10.1007/1-4020-3658-2 | MR 1374329 | Zbl 0862.11001
[5] Sándor, J.: On certain inequalities for $\sigma$, $\varphi$, $\psi$ and related functions. Notes Number Theory Discrete Math. 20 (2014), 52-60. MR 1417443 | Zbl 1344.11008
[6] Sándor, J.: Theory of Means and Their Inequalities. (2018), Available at \let \relax\brokenlink { http://www.math.ubbcluj.ro/ jsandor/lapok/Sandor-Jozsef-Theory of Means {and Their Inequalities.pdf}}.
[7] Sándor, J., Crstici, B.: Handbook of Number Theory II. Kluwer, Dordrecht (2004). DOI 10.1007/1-4020-2547-5 | MR 2119686 | Zbl 1079.11001
[8] Solé, P., Planat, M.: Extreme values of Dedekind's $\psi$-function. J. Comb. Number Theory 3 (2011), 33-38. MR 2908180 | Zbl 1266.11107
Partner of
EuDML logo