Previous |  Up |  Next

Article

Keywords:
conformal vector field; unit tangent bundle; $g$-natural metric
Summary:
We study conformal and Killing vector fields on the unit tangent bundle, over a Riemannian manifold, equipped with an arbitrary pseudo-Riemannian $g$-natural metric. We characterize the conformal and Killing conditions for classical lifts of vector fields and we give a full classification of conformal fiber-preserving vector fields on the unit tangent bundle endowed with an arbitrary pseudo-Riemannian Kaluza-Klein type metric.
References:
[1] Abbassi, M. T. K.: Métriques naturelles sur le fibré tangent à une variété Riemannienne. Editions universitaires europeennes, Paris (2012), French.
[2] Abbassi, M. T. K., Amri, N., Calvaruso, G.: Kaluza-Klein type Ricci solitons on unit tangent sphere bundles. Differ. Geom. Appl. 59 (2018), 184-203. DOI 10.1016/j.difgeo.2018.04.006 | MR 3804828 | Zbl 1391.53053
[3] Abbassi, M. T. K., Calvaruso, G.: $g$-natural contact metrics on unit tangent sphere bundles. Monaths. Math. 151 (2007), 89-109. DOI 10.1007/s00605-006-0421-9 | MR 2322938 | Zbl 1128.53049
[4] Abbassi, M. T. K., Calvaruso, G.: $g$-natural metrics of constant curvature on unit tangent sphere bundles. Arch. Math., Brno 48 (2012), 81-95. DOI 10.5817/AM2012-2-81 | MR 2946208 | Zbl 1274.53112
[5] Abbassi, M. T. K., Kowalski, O.: On $g$-natural metrics with constant scalar curvature on unit tangent sphere bundles. Topics in Almost Hermitian Geometry and Related Fields World Scientific, Hackensack (2005), 1-29. DOI 10.1142/9789812701701_0001 | MR 2181488 | Zbl 1107.53023
[6] Abbassi, M. T. K., Kowalski, O.: Naturality of homogeneous metrics on Stiefel manifolds $SO(m+1)/SO(m-1)$. Differ. Geom. Appl. 28 (2010), 131-139. DOI 10.1016/j.difgeo.2009.05.007 | MR 2594457 | Zbl 1190.53020
[7] Abbassi, M. T. K., Kowalski, O.: On Einstein Riemannian $g$-natural metrics on unit tangent sphere bundles. Ann. Global Anal. Geom. 38 (2010), 11-20. DOI 10.1007/s10455-010-9197-1 | MR 2657839 | Zbl 1206.53049
[8] Abbassi, M. T. K., Sarih, M.: Killing vector fields on tangent bundles with Cheeger-Gromoll metric. Tsukuba J. Math. 27 (2003), 295-306. DOI 10.21099/tkbjm/1496164650 | MR 2025729 | Zbl 1060.53019
[9] Abbassi, M. T. K., Sarih, M.: On natural metrics on tangent bundles of Riemannian manifolds. Arch. Math., Brno 41 (2005), 71-92. MR 2142144 | Zbl 1114.53015
[10] Abbassi, M. T. K., Sarih, M.: On some hereditary properties of Riemannian $g$-natural metrics on tangent bundles of Riemannian manifolds. Differ. Geom. Appl. 22 (2005), 19-47. DOI 10.1016/j.difgeo.2004.07.003 | MR 2106375 | Zbl 1068.53016
[11] Benyounes, M., Loubeau, E., Todjihounde, L.: Harmonic maps and Kaluza-Klein metrics on spheres. Rocky Mt. J. Math. 42 (2012), 791-821. DOI 10.1216/RMJ-2012-42-3-791 | MR 2966473 | Zbl 1257.58008
[12] Calvaruso, G., Martín-Molina, V.: Paracontact metric structures on the unit tangent sphere bundle. Ann. Mat. Pura Appl. (4) 194 (2015), 1359-1380. DOI 10.1007/s10231-014-0424-4 | MR 3383943 | Zbl 1328.53035
[13] Calvaruso, G., Perrone, D.: Homogeneous and $H$-contact unit tangent sphere bundles. J. Aust. Math. Soc. 88 (2010), 323-337. DOI 10.1017/S1446788710000157 | MR 2661453 | Zbl 1195.53045
[14] Calvaruso, G., Perrone, D.: Metrics of Kaluza-Klein type on the anti-de Sitter space $\mathbb{H}_1^3$. Math. Nachr. 287 (2014), 885-902. DOI 10.1002/mana.201200105 | MR 3219219 | Zbl 1304.53070
[15] Deshmukh, S.: Geometry of conformal vector fields. Arab J. Math. Sci. 23 (2017), 44-73. DOI 10.1016/j.ajmsc.2016.09.003 | MR 3589499 | Zbl 1356.53043
[16] Dombrowski, P.: On the geometry of the tangent bundle. J. Reine Angew. Math. 210 (1962), 73-88. DOI 10.1515/crll.1962.210.73 | MR 141050 | Zbl 0105.16002
[17] Ewert-Krzemieniewski, S.: On Killing vector fields on a tangent bundle with $g$-natural metric. I. Note Mat. 34 (2014), 107-133. DOI 10.1285/i15900932v34n2p107 | MR 3315987 | Zbl 1319.53017
[18] Gezer, A., Bilen, L.: On infinitesimal conformal transformations with respect to the Cheeger-Gromoll metric. An. Ştiinţ. Univ. ``Ovidius'' Constanţa, Ser. Mat. 20 (2012), 113-128. DOI 10.2478/v10309-012-0009-4 | MR 2928413 | Zbl 1274.53027
[19] Hall, G. S.: Symmetries and Curvature Structure in General Relativity. World Scientific Lecture Notes in Physics 46, World Scientific, River Edge (2004). DOI 10.1142/1729 | MR 2109072 | Zbl 1054.83001
[20] Hedayatian, S., Bidabad, B.: Conformal vector fields on tangent bundle of a Riemannian manifold. Iran. J. Sci. Technol, Trans. A, Sci. 29 (2005), 531-539. MR 2239754 | Zbl 1106.53012
[21] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. Springer, Berlin (1993). DOI 10.1007/978-3-662-02950-3 | MR 1202431 | Zbl 0782.53013
[22] Konno, T.: Killing vector fields on tangent sphere bundles. Kodai Math. J. 21 (1998), 61-72. DOI 10.2996/kmj/1138043835 | MR 1625061 | Zbl 0907.53033
[23] Konno, T.: Infinitesimal isometries on tangent sphere bundles over three-dimensional manifolds. Hiroshima Math. J. 41 (2011), 343-366. DOI 10.32917/hmj/1323700039 | MR 2895285 | Zbl 1235.53051
[24] Kowalski, O., Sekizawa, M.: Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles - a classification. Bull. Tokyo Gakugei Univ., Sect. IV, Ser. Math. Nat. Sci. 40 (1988), 1-29. MR 0974641 | Zbl 0656.53021
[25] Peyghan, E., Heydari, A.: Conformal vector fields on tangent bundle of a Riemannian manifold. J. Math. Anal. Appl. 347 (2008), 136-142. DOI 10.1016/j.jmaa.2008.05.092 | MR 2433831 | Zbl 1145.53028
[26] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds. Tohoku Math. J., II. Ser. 10 (1958), 338-354. DOI 10.2748/tmj/1178244668 | MR 0112152 | Zbl 0086.15003
[27] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds. II. Tohoku Math. J., II. Ser. 14 (1962), 146-155. DOI 10.2748/tmj/1178244169 | MR 0145456 | Zbl 0109.40505
[28] Şimşir, F. M., Tezer, C.: Conformal vector fields with respect to the Sasaki metric tensor. J. Geom. 84 (2005), 133-151. DOI 10.1007/s00022-005-0033-x | MR 2215371 | Zbl 1093.53022
[29] Tanno, S.: Killing vectors and geodesic flow vectors on tangent bundles. J. Reine Angew. Math. 282 (1976), 162-171. DOI 10.1515/crll.1976.282.162 | MR 0405285 | Zbl 0317.53042
[30] Wood, C. M.: An existence theorem for harmonic sections. Manuscr. Math. 68 (1990), 69-75. DOI 10.1007/BF02568751 | MR 1057077 | Zbl 0713.58010
[31] Yano, K., Kobayashi, S.: Prolongations of tensor fields and connections to tangent bundles. I: General theory. J. Math. Soc. Japan 18 (1966), 194-210. DOI 10.2969/jmsj/01820194 | MR 0193596 | Zbl 0141.38702
[32] Yano, K., Kobayashi, S.: Prolongations of tensor fields and connections to tangent bundles. II: Infinitesimal automorphisms. J. Math. Soc. Japan 18 (1966), 236-246. DOI 10.2969/jmsj/01830236 | MR 0200857 | Zbl 0147.21501
Partner of
EuDML logo