[1] Arrow, K. J., Debreu, G.:
Existence of an equilibrium for a competitive economy. Econometrica 22 (1954), 265-290.
DOI
[2] Aubin, J. P.:
Cooperative fuzzy games. Math. Oper. Res. 6 (1981), 1-13.
DOI
[3] Anello, G., Donato, M. B., Milasi, M.:
A quasi-variational approach to a competitive economic equilibrium problem without strong monotonicity assumption. J. Global Optim. 48 (2010), 279-287.
DOI
[4] Anello, G., Donato, M. B., Milasi, M.:
Variational methods for equilibrium problems involving quasi-concave utility functions. Optim. Engrg. 13 (2012), 169-179.
DOI
[5] Chanas, S., Kasperski, A.:
On two single machine scheduling problems with fuzzy processing times and fuzzy due dates. Europ. J. Oper. Res. 147 (2003), 281-296.
DOI
[6] Debreu, G., Scarf, H.:
A limit theorem on the core of an economy. Int. Econom. Rev. 4 (1963), 235-246.
DOI
[7] Dubois, D., Prade, H.:
Fuzzy Sets and Systems: Theory and Applications. Academic Press, NY, London 1980.
Zbl 0444.94049
[8] Donato, M. B., Milasi, M., Vitanza, C.:
Quasi-variational approach of a competitive economic equilibrium problem with utility function: existence of equilibrium. Math. Models Methods Appl. Sci. 18 (2008), 351-367.
DOI
[9] Donato, M. B., Milasi, M., Vitanza, C.:
On the study of an economic equilibrium with variational inequality arguments. J. Optim. Theory Appl. 168 (2016), 646-660.
DOI
[10] Donato, M. B., Milasi, M., Villanacci, A.:
Restricted participation on financial markets: a general equilibrium approach using variational inequality methods. Networks Spatial Econom. (2020), 1-33.
DOI
[11] Edgeworth, F. Y.: Mathematical psychics. Kegan Paul, London 1881.
[12] Gale, D.:
The law of supply and demand. Math, Scandinav. 3 (1955), 155-169.
DOI
[13] Heilpern, S.:
The expected value of a fuzzy number. Fuzzy Sets and Systems 47 (1992), 81-86.
DOI
[14] McKenzie, L. W.:
On the existence of general equilibrium for a competitive market. Econometrica 27 (1959), 54-71.
DOI
[15] Mallozzi, L., Scalzo, V., Tijs, S.:
Fuzzy interval cooperative games. Fuzzy Sets and Systems 165 (2011), 98-105.
DOI
[16] Milasi, M., Puglisi, A., Vitanza, C.:
On the study of the economic equilibrium problem through preference relations. J. Math. Anal. Appl. 477 (2019), 153-162.
DOI
[17] Nash, J. F.:
Equilibrium points in n-person games. Proc. National Acad. Sci. 36 (1950), 48-49.
DOI
[18] Nikaido, H.:
On the classical multilateral exchange problem. Metroeconomica 8 (1956), 135-145.
DOI
[19] Rim, D. I., Kim, W. K.:
A fixed point theorem and existence of equilibrium for abstract economies. Bull. Austral. Math. Soc. 45 (1992), 385-394.
DOI
[20] Shapley, L. S., Shubik, M.:
On market games. J. Econom. Theory 1 (1969), 9-25.
DOI
[21] Taleshian, A., Rezvani, S.: Multiplication operation on trapezoidal fuzzy numbers. J. Phys. Sci. 15 (2011), 17-26.
[22] Urai, K., Murakami, H.:
Replica core equivalence theorem: An extension of the Debreu-Scarf limit theorem to double infinity monetary economies. J. Math. Econom. 66 (2016), 83-88.
DOI
[23] Wald, A.:
On some systems of equations of mathematical economics. Econometrica 19 (1951), 368-403.
DOI
[24] Walras, L.: Elements d'economie politique pure. Corbaz, Lausanne 1874.
[25] Zhang, X., Sun, H., Xu, G. J., Hou, D. S.:
On the core, nucleolus and bargaining sets of cooperative games with fuzzy payoffs. J. Intell. Fuzzy Systems 36 (2019), 6129-6142.
DOI
[26] Zhang, X., Sun, H., Jin, X. Z., Esangbedo, M. O.:
Existence of an equilibrium for pure exchange economy with fuzzy preferences. J. Intell. Fuzzy Systems 39 (2020), 2737-2752.
DOI
[27] Zhang, X., Sun, H., Esangbedo, M. O.:
On the core, bargaining set and the set of competitive allocations of fuzzy exchange economy with a continuum of agents. Int. J. Uncertainty, Fuzziness Knowledge-Based Systems 28 (2020), 1003-1021.
DOI