[1] Baczyński, M., Jayaram, B.:
On the characterizations of (S,N)-implications. Fuzzy Sets Syst. 158 (2007), 1713-1727.
DOI
[2] Dai, S. S.:
Logical foundation of symmetric implicational methods for fuzzy reasoning. J. Intell. Fuzzy Syst. 39 (2020), 1089-1095.
DOI
[3] Dai, S. S., Pei, D. W., Guo, D. H.:
Robustness analysis of full implication inference method. Int. J. Approx. Reason. 54 (2013), 653-666.
DOI
[4] Fodor, J., Roubens, M.: Fuzzy Preference Modeling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht, 1994.
[5] Hájek, P.:
Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht, 1998.
Zbl 1007.03022
[6] Hou, J., You, F., Li, H. X.:
Fuzzy systems constructed by triple I algorithm and their response ability. Prog. Nat. Sci. 15 (2005), 29-37.
DOI
[7] Li, H. X.:
Probability representations of fuzzy systems. Sci. China Ser. F Inf. Sci. 49 (2006), 339-363.
DOI
[8] Li, D. C., Li, Y. M.:
Algebraic structures of interval-valued fuzzy (S,N)-implications. Int. J. Approx. Reason. 53 (2012) 892-900.
DOI
[9] Li, H. X., You, F., Peng, J. Y.:
Fuzzy controllers based on some fuzzy implication operators and their response functions. Prog. Nat. Sci. 14 (2004), 15-20.
DOI
[10] Liu, H. W., Wang, G. J.:
Unified forms of fully implicational restriction methods for fuzzy reasoning. Inf. Sci. 177 (2007), 956-966.
DOI
[11] Luo, M. X., Liu, B.:
Robustness of interval-valued fuzzy inference triple I algorithms based on normalized Minkowski distance. J. Log. Algebr. Methods 86 (2017), 298-307.
DOI
[12] Luo, M. X., Yao, N.:
Triple I algorithms based on Schweizer-Sklar operators in fuzzy reasoning. Int. J. Approx. Reason. 54 (2013), 640-652.
DOI
[13] Luo, M. X, Zhang, K.:
Robustness of full implication algorithms based on interval-valued fuzzy inference. Int. J. Approx. Reason. 62 (2015), 61-72.
DOI
[14] Kaur, P., Goyal, M., Lu, J.:
A comparison of bidding strategies for online auctions using fuzzy reasoning and negotiation decision functions. IEEE Trans. Fuzzy Syst. 25 (2017) 425-438.
DOI
[15] Klement, E. P., Mesiar, R., Pap, E.:
Triangular Norms. Kluwer Academic Publishers, Dordrecht, 2000.
Zbl 1087.20041
[16] Mas, M., Monserrat, M., Torrens, J., Trillas, E.:
A survey on fuzzy implication functions. IEEE Trans. Fuzzy Syst. 15 (2007), 1107-1121.
DOI
[17] Novák, V., Perfilieva, I., Močkoř, J.:
Mathematical Principles of Fuzzy Logic. Kluwer Academic Publishes, Boston, Dordrecht, 1999.
Zbl 0940.03028
[18] Peng, J. Y.:
Fully implicational triple I restriction algorithm for fuzzy reasoning based on some familiar implication operators. Prog. Nat. Sci. 15 (2005), 539-546.
DOI
[19] Song, S. J., Feng, C. B., Wu, C. X.: Theory of restriction degree of triple I method with total inference rules of fuzzy reasoning. Prog. Nat. Sci. 11 (2001), 58-66.
[20] Song, S. J., Wu, C.:
Reverse triple I method of fuzzy reasoning. Sci. China, Ser. F, Inf. Sci. 45 (2002), 344-364.
DOI 10.1007/BF02714092
[21] Pei, D. W.:
$R_{0}$ implication: characteristics and applications. Fuzzy Set Syst. 131 (2002), 297-302.
DOI
[22] Pei, D. W.:
On the strict logic foundation of fuzzy reasoning. Soft Comput. 8 (2004), 539-545.
DOI
[23] Pei, D. W.:
Formalization of implication based fuzzy reasoning method. Int. J. Approx. Reason. 53 (2012), 837-846.
DOI
[24] Pedrycz, W.: Granular Computing: Analysis and Design of Intelligent Systems. CRC Press/Francis and Taylor, Boca Raton 2013.
[25] Pedrycz, W.:
From fuzzy data analysis and fuzzy regression to granular fuzzy data analysis. Fuzzy Set Syst. 274 (2015), 12-17.
DOI |
MR 3355341
[26] Pedrycz, W., Wang, X. M.:
Designing fuzzy sets with the use of the parametric principle of justifiable granularity. IEEE Trans. Fuzzy Syst. 24 (2016), 489-496.
DOI
[27] Tang, Y. M., Yang, X. Z.:
Symmetric implicational method of fuzzy reasoning. Int. J. Approx. Reason. 54 (2013), 1034-1048.
DOI
[28] Tang, Y. M., Pedrycz, W.:
On the $\alpha$(u,v)-symmetric implicational method for R- and (S, N)-implications. Int. J. Approx. Reason. 92 (2018), 212-231.
DOI
[29] Wang, L. X.: A Course in Fuzzy Systems and Control. Prentice-Hall, Englewood Cliffs, NJ 1997.
[30] Wang, G. J.:
On the logic foundation of fuzzy reasoning. Inform. Sci. 117 (1999), 47-88.
DOI
[31] Wang, G. J., Fu, L.:
Unified forms of triple I method. Comput. Math. Appl. 49 (2005), 923-932.
DOI
[32] Wang, G. J., Zhou, H. J.: Introduction to Mathematical Logic and Resolution Principle. Co-published by Science Press and Alpha International Science Ltd., 2009.
[33] Zadeh, L. A.:
Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cyber. 3 (1973), 28-44.
DOI