Previous |  Up |  Next

Article

Keywords:
fuzzy inference; fuzzy entropy; compositional rule of inference; continuity
Summary:
The symmetric implicational method is revealed from a different perspective based upon the restriction theory, which results in a novel fuzzy inference scheme called the symmetric implicational restriction method. Initially, the SIR-principles are put forward, which constitute optimized versions of the triple I restriction inference mechanism. Next, the existential requirements of basic solutions are given. The supremum (or infimum) of its basic solutions is achieved from some properties of fuzzy implications. The conditions are obtained for the supremum to become the maximum (or the infimum to be the minimum). Lastly, four concrete examples are provided, and it is shown that the new method is better than the triple I restriction method, because the former is able to let the inference more compact, and lead to more and superior particular inference schemes.
References:
[1] Baczyński, M., Jayaram, B.: On the characterizations of (S,N)-implications. Fuzzy Sets Syst. 158 (2007), 1713-1727. DOI 
[2] Dai, S. S.: Logical foundation of symmetric implicational methods for fuzzy reasoning. J. Intell. Fuzzy Syst. 39 (2020), 1089-1095. DOI 
[3] Dai, S. S., Pei, D. W., Guo, D. H.: Robustness analysis of full implication inference method. Int. J. Approx. Reason. 54 (2013), 653-666. DOI 
[4] Fodor, J., Roubens, M.: Fuzzy Preference Modeling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht, 1994.
[5] Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht, 1998. Zbl 1007.03022
[6] Hou, J., You, F., Li, H. X.: Fuzzy systems constructed by triple I algorithm and their response ability. Prog. Nat. Sci. 15 (2005), 29-37. DOI 
[7] Li, H. X.: Probability representations of fuzzy systems. Sci. China Ser. F Inf. Sci. 49 (2006), 339-363. DOI 
[8] Li, D. C., Li, Y. M.: Algebraic structures of interval-valued fuzzy (S,N)-implications. Int. J. Approx. Reason. 53 (2012) 892-900. DOI 
[9] Li, H. X., You, F., Peng, J. Y.: Fuzzy controllers based on some fuzzy implication operators and their response functions. Prog. Nat. Sci. 14 (2004), 15-20. DOI 
[10] Liu, H. W., Wang, G. J.: Unified forms of fully implicational restriction methods for fuzzy reasoning. Inf. Sci. 177 (2007), 956-966. DOI 
[11] Luo, M. X., Liu, B.: Robustness of interval-valued fuzzy inference triple I algorithms based on normalized Minkowski distance. J. Log. Algebr. Methods 86 (2017), 298-307. DOI 
[12] Luo, M. X., Yao, N.: Triple I algorithms based on Schweizer-Sklar operators in fuzzy reasoning. Int. J. Approx. Reason. 54 (2013), 640-652. DOI 
[13] Luo, M. X, Zhang, K.: Robustness of full implication algorithms based on interval-valued fuzzy inference. Int. J. Approx. Reason. 62 (2015), 61-72. DOI 
[14] Kaur, P., Goyal, M., Lu, J.: A comparison of bidding strategies for online auctions using fuzzy reasoning and negotiation decision functions. IEEE Trans. Fuzzy Syst. 25 (2017) 425-438. DOI 
[15] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht, 2000. Zbl 1087.20041
[16] Mas, M., Monserrat, M., Torrens, J., Trillas, E.: A survey on fuzzy implication functions. IEEE Trans. Fuzzy Syst. 15 (2007), 1107-1121. DOI 
[17] Novák, V., Perfilieva, I., Močkoř, J.: Mathematical Principles of Fuzzy Logic. Kluwer Academic Publishes, Boston, Dordrecht, 1999. Zbl 0940.03028
[18] Peng, J. Y.: Fully implicational triple I restriction algorithm for fuzzy reasoning based on some familiar implication operators. Prog. Nat. Sci. 15 (2005), 539-546. DOI 
[19] Song, S. J., Feng, C. B., Wu, C. X.: Theory of restriction degree of triple I method with total inference rules of fuzzy reasoning. Prog. Nat. Sci. 11 (2001), 58-66.
[20] Song, S. J., Wu, C.: Reverse triple I method of fuzzy reasoning. Sci. China, Ser. F, Inf. Sci. 45 (2002), 344-364. DOI 10.1007/BF02714092
[21] Pei, D. W.: $R_{0}$ implication: characteristics and applications. Fuzzy Set Syst. 131 (2002), 297-302. DOI 
[22] Pei, D. W.: On the strict logic foundation of fuzzy reasoning. Soft Comput. 8 (2004), 539-545. DOI 
[23] Pei, D. W.: Formalization of implication based fuzzy reasoning method. Int. J. Approx. Reason. 53 (2012), 837-846. DOI 
[24] Pedrycz, W.: Granular Computing: Analysis and Design of Intelligent Systems. CRC Press/Francis and Taylor, Boca Raton 2013.
[25] Pedrycz, W.: From fuzzy data analysis and fuzzy regression to granular fuzzy data analysis. Fuzzy Set Syst. 274 (2015), 12-17. DOI  | MR 3355341
[26] Pedrycz, W., Wang, X. M.: Designing fuzzy sets with the use of the parametric principle of justifiable granularity. IEEE Trans. Fuzzy Syst. 24 (2016), 489-496. DOI 
[27] Tang, Y. M., Yang, X. Z.: Symmetric implicational method of fuzzy reasoning. Int. J. Approx. Reason. 54 (2013), 1034-1048. DOI 
[28] Tang, Y. M., Pedrycz, W.: On the $\alpha$(u,v)-symmetric implicational method for R- and (S, N)-implications. Int. J. Approx. Reason. 92 (2018), 212-231. DOI 
[29] Wang, L. X.: A Course in Fuzzy Systems and Control. Prentice-Hall, Englewood Cliffs, NJ 1997.
[30] Wang, G. J.: On the logic foundation of fuzzy reasoning. Inform. Sci. 117 (1999), 47-88. DOI 
[31] Wang, G. J., Fu, L.: Unified forms of triple I method. Comput. Math. Appl. 49 (2005), 923-932. DOI 
[32] Wang, G. J., Zhou, H. J.: Introduction to Mathematical Logic and Resolution Principle. Co-published by Science Press and Alpha International Science Ltd., 2009.
[33] Zadeh, L. A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cyber. 3 (1973), 28-44. DOI 
Partner of
EuDML logo