Previous |  Up |  Next

Article

Keywords:
Ahlfors regular; $s$-regular; packing number; Minkowski measurability; renewal theory
Summary:
We deal with the so-called Ahlfors regular sets (also known as $s$-regular sets) in metric spaces. First we show that those sets correspond to a certain class of tree-like structures. Building on this observation we then study the following question: Under which conditions does the limit $\lim_{\varepsilon\to 0+} \varepsilon^s N(\varepsilon,K)$ exist, where $K$ is an $s$-regular set and $N(\varepsilon,K)$ is for instance the $\varepsilon$-packing number of $K$?
References:
[1] Arcozzi N., Rochberg R., Sawyer E. T., Wick B. D.: Potential theory on trees, graphs and Ahlfors-regular metric spaces. Potential Anal. 41 (2014), no. 2, 317–366. DOI 10.1007/s11118-013-9371-8 | MR 3232028
[2] Balogh Z. M., Rohner H.: Self-similar sets in doubling spaces. Illinois J. Math. 51 (2007), no. 4, 1275–1297. DOI 10.1215/ijm/1258138544 | MR 2417427
[3] Bowen R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathematics, 470, Springer, Berlin, 1975. DOI 10.1007/BFb0081284 | MR 0442989
[4] Freiberg U., Kombrink S.: Minkowski content and local Minkowski content for a class of self-conformal sets. Geom. Dedicata 159 (2012), 307–325. DOI 10.1007/s10711-011-9661-5 | MR 2944534
[5] Gatzouras D.: Lacunarity of self-similar and stochastically self-similar sets. Trans. Amer. Math. Soc. 352 (2000), no. 5, 1953–1983. DOI 10.1090/S0002-9947-99-02539-8 | MR 1694290 | Zbl 0946.28006
[6] Hutchinson J. E.: Fractals and self-similarity. Indiana Univ. Math. J. 30 (1981), no. 5, 713–747. DOI 10.1512/iumj.1981.30.30055 | MR 0625600
[7] Kesseböhmer M., Kombrink S.: A complex Ruelle–Perron–Frobenius theorem for infinite Markov shifts with applications to renewal theory. Discrete Contin. Dyn. Syst. Ser. S 10 (2017), no. 2, 335–352. MR 3600649
[8] Kesseböhmer M., Kombrink S.: Minkowski measurability of infinite conformal graph directed systems and application to Apollonian packings. available at arXiv:1702.02854v1 [math.DS] (2017), 30 pages.
[9] Kombrink S.: Renewal theorems for a class of processes with dependent interarrival times and applications in geometry. available at arXiv:1512.08351v2 [math.PR] (2017), 25 pages. MR 3881115
[10] Lalley S. P.: The packing and covering functions of some self-similar fractals. Indiana Univ. Math. J. 37 (1988), no. 3, 699–710. DOI 10.1512/iumj.1988.37.37034 | MR 0962930
[11] Lalley S. P.: Renewal theorems in symbolic dynamics, with applications to geodesic flows, non-Euclidean tessellations and their fractal limits. Acta Math. 163 (1989), no. 1–2, 1–55. DOI 10.1007/BF02392732 | MR 1007619
[12] Mattila P.: Geometry of Sets and Measures in Euclidean Spaces. Fractals and rectifiability, Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, Cambridge, 1995. MR 1333890 | Zbl 0911.28005
[13] Schief A.: Separation properties for self-similar sets. Proc. Amer. Math. Soc. 122 (1994), no. 1, 111–115. DOI 10.1090/S0002-9939-1994-1191872-1 | MR 1191872 | Zbl 0807.28005
[14] Stachó L. L.: On the volume function of parallel sets. Acta Sci. Math. (Szeged) 38 (1976), no. 3–4, 365–374. MR 0442202
[15] Winter S.: Curvature Measures and Fractals. Dissertationes Math., 453, 2008, 66 pages. DOI 10.4064/dm453-0-1 | MR 2423952
[16] Zähle M.: (S)PDE on fractals and Gaussian noise. in Recent Developments in Fractals and Related Fields, Trends Math., Birkhäuser/Springer, Cham, 2017, pages 295–312. MR 3775469
Partner of
EuDML logo