[1] Amrahov, Ş. E., Khastan, A., Gasilov, N., Fatullayev, A. G.:
Relationship between Bede-Gal differentiable set-valued functions and their associated support functions. Fuzzy Sets and Systems 295 (2016), 57-71.
DOI |
MR 3488877
[2] Aubin, J.-P., Frankowska, H.:
Set-Valued Analysis. Birkhäuser, Boston 1990.
MR 1048347
[3] Banks, H. T., Jacobs, M. Q.:
A differential calculus for multifunctions. J. Math. Anal. Appl. 29 (1970), 246-272.
DOI |
MR 0265937
[4] Bede, B., Gal, S. G.:
Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets Systems 151 (2005), 581-599.
DOI |
MR 2126175
[5] Bridgland, T. F.:
Trajectory integrals of set-valued functions. Pacific J. Math. 33 (1970), 1, 43-68.
DOI |
MR 0262454
[6] Chalco-Cano, Y., Rufián-Lizana, A., Román-Flores, H., Jiménez-Gamero, M. D.:
Calculus for interval-valued functions using generalized Hukuhara derivative and applications. Fuzzy Sets and Systems 219 (2013), 49-67.
DOI |
MR 3035733
[7] Costa, T. M. da, Chalco-Cano, Y., Lodwick, W. A., Silva, G. N.:
A new approach to linear interval differential equations as a first step toward solving fuzzy differential. Fuzzy Sets Systems 347 (2018), 129-141.
DOI |
MR 3812772
[8] Gasilov, N. A., Amrahov, Ş. E.:
Solving a nonhomogeneous linear system of interval differential equations. Soft Computing 22 (2018), 12, 3817-3828.
DOI
[9] Gasilov, N. A., Amrahov, Ş. E., Fatullayev, A. G., Hashimoglu, I. F.:
Solution method for a boundary value problem with fuzzy forcing function. Inform. Sci. 317 (2015), 349-368.
DOI |
MR 3350716
[10] Gasilov, N. A., Amrahov, Ş. E.:
On differential equations with interval coefficients. Math. Methods Appl. Sci. 43 (2020), 4, 1825-1837.
DOI |
MR 4067025
[11] Gasilov, N. A., Kaya, M.:
A method for the numerical solution of a boundary value problem for a linear differential equation with interval parameters. Int. J. Comput. Methods 16 (2019), 7, Article 1850115.
DOI |
MR 3985227
[12] Hoa, N. V.:
The initial value problem for interval-valued second-order differential equations under generalized H-differentiability. Inform. Sci. 311 (2015), 119-148.
DOI |
MR 3335912
[13] Hukuhara, M.:
Intégration des applications mesurables dont la valeur est un compact convexe. Funkcialaj Ekvacioj 10 (1967), 205-223.
MR 0226503
[14] Hüllermeier, E.:
An approach to modeling and simulation of uncertain dynamical systems. Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems 5 (1997), 2, 117-137.
DOI |
MR 1444079
[15] Kearfott, R. B., Kreinovich, V.:
Applications of Interval Computations. Kluwer Academic Publishers, 1996.
DOI |
MR 1386897
[16] Khastan, A., Rodriguez-Lopez, R., Shahidi, M.:
New differentiability concepts for set-valued functions and applications to set differential equations. Inform. Sci. 575 (2021), 355-378.
DOI |
MR 4278094
[17] Lakshmikantham, V., Bhaskar, T. G., Devi, J. V.:
Theory of Set Differential Equations in Metric Spaces. Cambridge Scientific Publ., Cambridge 2006.
MR 2438229
[18] Malinowski, M. T.:
Interval Cauchy problem with a second type Hukuhara derivative. Inform. Sci. 213 (2012), 94-105.
DOI |
MR 2949436
[19] Malinowski, M. T.:
On existence theorems to symmetric functional set-valued differential equations. Symmetry 13 (2021), 7, 1219.
DOI
[20] Markov, S.:
Calculus for interval functions of a real variable. Computing 22 (1979), 325-337.
DOI |
MR 0620060
[21] Mizukoshi, M. T., Lodwick, W. A.:
The interval eigenvalue problem using constraint interval analysis with an application to linear differential equations. Fuzzy Sets Systems 419 (2021), 141-157.
DOI |
MR 4269567
[22] Moore, R. E.:
Methods and Applications of Interval Analysis. SIAM (Society for Industrial and Applied Mathematics), Philadelphia 1979.
MR 0551212 |
Zbl 0417.65022
[23] Moore, R. E., Kearfott, R. B., Cloud, M. J.:
Introduction to Interval Analysis. SIAM (Society for Industrial and Applied Mathematics), Philadelphia 2009.
MR 2482682 |
Zbl 1168.65002
[24] Myšková, H.:
Max-min interval systems of linear equations with bounded solution. Kybernetika 48 (2012), 2, 299-308.
MR 2954328
[25] Plotnikov, A. V.:
Differentiation of multivalued mappings. \textit{T}-derivative. Ukrainian Math. J. 52 (2000), 8, 1282-1291.
DOI |
MR 1819723
[26] Polyanin, A. D., Zaitsev, V. F.:
Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems. CRC Press, Taylor and Francis Group, LLC, Boca Raton 2018.
MR 1396087
[27] Rahman, M. S., Das, S., Manna, A. K., Shaikh, A. A., Bhunia, A. K., Ahmadian, A., Salahshour, S.:
A new approach based on inventory control using interval differential equation with application to manufacturing system. Discrete Continuous Dynamical Systems - S 15 (2022), 2, 457-480.
DOI |
MR 4364449
[28] Stefanini, L., Bede, B.:
Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Analysis: Theory, Methods Appl. 71 (2009), 3-4, 1311-1328.
DOI |
MR 2527548
[29] Tao, J., Zhang, Z.:
Properties of interval-valued function space under the gH-difference and their application to semi-linear interval differential equations. Adv. Differ. Equations 45 (2016), 1-28.
DOI |
MR 3458239
[30] Wang, H., Rodriguez-Lopez, R.:
Boundary value problems for interval-valued differential equations on unbounded domains. Fuzzy Sets Systems 436 (2022), 102-127.
DOI |
MR 4402587
[31] Wang, H., Rodriguez-Lopez, R., Khastan, A.:
On the stopping time problem of interval-valued differential equations under generalized Hukuhara differentiability. Inform. Sci. 579 (2021), 776-795.
DOI |
MR 4304778