Previous |  Up |  Next

Article

Keywords:
interval differential equations; boundary value problem; bunch of functions; linear differential equations
Summary:
In this article, we deal with the Boundary Value Problem (BVP) for linear ordinary differential equations, the coefficients and the boundary values of which are constant intervals. To solve this kind of interval BVP, we implement an approach that differs from commonly used ones. With this approach, the interval BVP is interpreted as a family of classical (real) BVPs. The set (bunch) of solutions of all these real BVPs we define to be the solution of the interval BVP. Therefore, the novelty of the proposed approach is that the solution is treated as a set of real functions, not as an interval-valued function, as usual. It is well-known that the existence and uniqueness of the solution is a critical issue, especially in studying BVPs. We provide an existence and uniqueness result for interval BVPs under consideration. We also present a numerical method to compute the lower and upper bounds of the solution bunch. Moreover, we express the solution by an analytical formula under certain conditions. We provide numerical examples to illustrate the effectiveness of the introduced approach and the proposed method. We also demonstrate that the approach is applicable to non-linear interval BVPs.
References:
[1] Amrahov, Ş. E., Khastan, A., Gasilov, N., Fatullayev, A. G.: Relationship between Bede-Gal differentiable set-valued functions and their associated support functions. Fuzzy Sets and Systems 295 (2016), 57-71. DOI  | MR 3488877
[2] Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston 1990. MR 1048347
[3] Banks, H. T., Jacobs, M. Q.: A differential calculus for multifunctions. J. Math. Anal. Appl. 29 (1970), 246-272. DOI  | MR 0265937
[4] Bede, B., Gal, S. G.: Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets Systems 151 (2005), 581-599. DOI  | MR 2126175
[5] Bridgland, T. F.: Trajectory integrals of set-valued functions. Pacific J. Math. 33 (1970), 1, 43-68. DOI  | MR 0262454
[6] Chalco-Cano, Y., Rufián-Lizana, A., Román-Flores, H., Jiménez-Gamero, M. D.: Calculus for interval-valued functions using generalized Hukuhara derivative and applications. Fuzzy Sets and Systems 219 (2013), 49-67. DOI  | MR 3035733
[7] Costa, T. M. da, Chalco-Cano, Y., Lodwick, W. A., Silva, G. N.: A new approach to linear interval differential equations as a first step toward solving fuzzy differential. Fuzzy Sets Systems 347 (2018), 129-141. DOI  | MR 3812772
[8] Gasilov, N. A., Amrahov, Ş. E.: Solving a nonhomogeneous linear system of interval differential equations. Soft Computing 22 (2018), 12, 3817-3828. DOI 
[9] Gasilov, N. A., Amrahov, Ş. E., Fatullayev, A. G., Hashimoglu, I. F.: Solution method for a boundary value problem with fuzzy forcing function. Inform. Sci. 317 (2015), 349-368. DOI  | MR 3350716
[10] Gasilov, N. A., Amrahov, Ş. E.: On differential equations with interval coefficients. Math. Methods Appl. Sci. 43 (2020), 4, 1825-1837. DOI  | MR 4067025
[11] Gasilov, N. A., Kaya, M.: A method for the numerical solution of a boundary value problem for a linear differential equation with interval parameters. Int. J. Comput. Methods 16 (2019), 7, Article 1850115. DOI  | MR 3985227
[12] Hoa, N. V.: The initial value problem for interval-valued second-order differential equations under generalized H-differentiability. Inform. Sci. 311 (2015), 119-148. DOI  | MR 3335912
[13] Hukuhara, M.: Intégration des applications mesurables dont la valeur est un compact convexe. Funkcialaj Ekvacioj 10 (1967), 205-223. MR 0226503
[14] Hüllermeier, E.: An approach to modeling and simulation of uncertain dynamical systems. Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems 5 (1997), 2, 117-137. DOI  | MR 1444079
[15] Kearfott, R. B., Kreinovich, V.: Applications of Interval Computations. Kluwer Academic Publishers, 1996. DOI  | MR 1386897
[16] Khastan, A., Rodriguez-Lopez, R., Shahidi, M.: New differentiability concepts for set-valued functions and applications to set differential equations. Inform. Sci. 575 (2021), 355-378. DOI  | MR 4278094
[17] Lakshmikantham, V., Bhaskar, T. G., Devi, J. V.: Theory of Set Differential Equations in Metric Spaces. Cambridge Scientific Publ., Cambridge 2006. MR 2438229
[18] Malinowski, M. T.: Interval Cauchy problem with a second type Hukuhara derivative. Inform. Sci. 213 (2012), 94-105. DOI  | MR 2949436
[19] Malinowski, M. T.: On existence theorems to symmetric functional set-valued differential equations. Symmetry 13 (2021), 7, 1219. DOI 
[20] Markov, S.: Calculus for interval functions of a real variable. Computing 22 (1979), 325-337. DOI  | MR 0620060
[21] Mizukoshi, M. T., Lodwick, W. A.: The interval eigenvalue problem using constraint interval analysis with an application to linear differential equations. Fuzzy Sets Systems 419 (2021), 141-157. DOI  | MR 4269567
[22] Moore, R. E.: Methods and Applications of Interval Analysis. SIAM (Society for Industrial and Applied Mathematics), Philadelphia 1979. MR 0551212 | Zbl 0417.65022
[23] Moore, R. E., Kearfott, R. B., Cloud, M. J.: Introduction to Interval Analysis. SIAM (Society for Industrial and Applied Mathematics), Philadelphia 2009. MR 2482682 | Zbl 1168.65002
[24] Myšková, H.: Max-min interval systems of linear equations with bounded solution. Kybernetika 48 (2012), 2, 299-308. MR 2954328
[25] Plotnikov, A. V.: Differentiation of multivalued mappings. \textit{T}-derivative. Ukrainian Math. J. 52 (2000), 8, 1282-1291. DOI  | MR 1819723
[26] Polyanin, A. D., Zaitsev, V. F.: Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems. CRC Press, Taylor and Francis Group, LLC, Boca Raton 2018. MR 1396087
[27] Rahman, M. S., Das, S., Manna, A. K., Shaikh, A. A., Bhunia, A. K., Ahmadian, A., Salahshour, S.: A new approach based on inventory control using interval differential equation with application to manufacturing system. Discrete Continuous Dynamical Systems - S 15 (2022), 2, 457-480. DOI  | MR 4364449
[28] Stefanini, L., Bede, B.: Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Analysis: Theory, Methods Appl. 71 (2009), 3-4, 1311-1328. DOI  | MR 2527548
[29] Tao, J., Zhang, Z.: Properties of interval-valued function space under the gH-difference and their application to semi-linear interval differential equations. Adv. Differ. Equations 45 (2016), 1-28. DOI  | MR 3458239
[30] Wang, H., Rodriguez-Lopez, R.: Boundary value problems for interval-valued differential equations on unbounded domains. Fuzzy Sets Systems 436 (2022), 102-127. DOI  | MR 4402587
[31] Wang, H., Rodriguez-Lopez, R., Khastan, A.: On the stopping time problem of interval-valued differential equations under generalized Hukuhara differentiability. Inform. Sci. 579 (2021), 776-795. DOI  | MR 4304778
Partner of
EuDML logo