[1] Bekiaris-Liberis, N., Krstic, M.:
Compensation of wave actuator dynamics for nonlinear systems. IEEE Trans. Automat. Control 59 (2014), 1555-1570.
DOI |
MR 3225229
[2] Bresch-Pietri, D., Krstic, M.:
Output-feedback adaptive control of a wave PDE with boundary anti-damping. Automatica 50 (2014), 1407-1415.
DOI |
MR 3198779
[3] Cai, X., Yang, J., Liu, L., Zhang, J.:
Predictor control for nonlinear systems actuated via transport PDEs with time/space varying propagation speeds. Asian J. Control (2021).
DOI
[4] Cai, X., Wu, J., Zhan, X., Zhang, X.:
Inverse optimal control for linearizable nonlinear systems with input delays. Kybernetika 55 (2019), 727-739.
DOI |
MR 4043545
[5] Cai, X., Liao, L., Zhang, J., Zhang, W.:
Observer design for a class of nonlinear system in cascade with counter-conveting transport dynamics. Kybernetika 52 (2016), 76-88.
MR 3482612
[6] Cai, X., Krstic, M.:
Nonlinear control under wave actuator dynamics with time- and state-dependent moving boundary. Int. J. Robust. Nonlinear Control 25 (2015), 222-251.
DOI |
MR 3293094 |
Zbl 1305.93167
[7] Cai, X., Krstic, M.:
Nonlinear stabilization through wave PDE dynamics with a moving uncontrolled boundary. Automatica 68 (2016), 27-38.
DOI |
MR 3483665
[8] Cai, X., Diagne, M.:
Boundary control of nonlinear ODE/wave PDE systems with spatially-varying propagation speed. IEEE Trans. Automat. Control 66 (2021), 4401-4408.
DOI |
MR 4308496
[9] Diagne, M., Bekiaris-Liberis, N., Krstic, M.:
Compensation of input delay that depends on delayed input. Automatica 85 (2017), 362-373.
DOI |
MR 3712879
[10] Jansen, J.: Nonlinear Dynamics of Oilwell Drillstrings. Ph.D. Thesis, Delfh University of Technology, 1993.
[11] Krstic, M.:
Input delay compensation for forward complete and feedforward nonlinear systems. IEEE Trans. Automat. Control 55 (2010), 287-303.
DOI |
MR 2604408
[12] Lin, C., Cai, X.:
Stabilization of a class of nonlinear ODE/Wave PDE cascaded systems. IEEE Access 10 (2022), 35653-35664.
DOI
[13] Meglio, F. Di, Argomedo, F. Bribiesca, Hu, L., Krstic, M.:
Stabilization of coupled linear heterodirectional hyperbolic PDE-ODE systems. Automatica 87 (2018), 281-289.
DOI |
MR 3733925
[14] Su, L., Wang, J., Krstic, M.:
Boundary feedback stabilization of a class of coupled hyperbolic equations with non-local terms. IEEE Trans. Automat. Control 63 (2018), 2633-2640.
DOI |
MR 3845992
[15] Su, L., Chen, S., Wang, J., Krstic, M.:
Stabilization of $2\times 2$ hyperbolic PDEs with recirculation in unactuated channel. Automatica 120 (2020), 109147(1-14).
DOI |
MR 4130471
[16] Saldivar, M., Mondie, S., Loiseau, J., Rasvan, V.: Stick-slip oscillations in oilwell drillstrings: distributed parameter and neutral type retarded model approaches. In: Proc. 18th IFAC World Congress, Milano 2011, pp. 284-289.
[17] Sagert, C., Meglio, F., Krstic, M., Rouchon, P.:
Backstepping and flatness approaches for stabilization of the stick-slip phenomenon for drilling. In: IFAC Sympositium on System Structure and Control, France 2013, pp. 779-784.
DOI
[18] Sontag, E.:
Smooth stabilization implies coprime factorization. IEEE Trans. Automat. Control 34 (1989), 435-443.
DOI |
MR 0987806