Previous |  Up |  Next

Article

Keywords:
sub-Riemannian geometry; equivalence problem; frame bundle; Cartan connection; flatness theorem
Summary:
These notes give an introduction to the equivalence problem of sub-Riemannian manifolds. We first introduce preliminaries in terms of connections, frame bundles and sub-Riemannian geometry. Then we arrive to the main aim of these notes, which is to give the description of the canonical grading and connection existing on sub-Riemann manifolds with constant symbol. These structures are exactly what is needed in order to determine if two manifolds are isometric. We give three concrete examples, which are Engel (2,3,4)-manifolds, contact manifolds and Cartan (2,3,5)-manifolds. These notes are an edited version of a lecture series given at the 42nd Winter school: Geometry and Physics, Srní, Czech Republic, mostly based on [8] and other earlier work. However, the work on Engel (2,3,4)-manifolds is original research, and illustrate the important special case were our model has the minimal set of isometries.
References:
[1] Agrachev, A., Barilari, D., Boscain, U.: A comprehensive introduction to sub-Riemannian geometry. Cambridge Stud. Adv. Math., vol. 181, Cambridge University Press, Cambridge, 2020. MR 3971262
[2] Alekseevsky, D., Medvedev, A., Slovák, J.: Constant curvature models in sub-Riemannian geometry. J. Geom. Phys. 138 (2019), 241–256. DOI 10.1016/j.geomphys.2018.09.013 | MR 3945041
[3] Bellaïche, A.: The tangent space in sub-Riemannian geometry. Sub-Riemannian geometry, Progr. Math., vol. 144, Birkhäuser, Basel, 1996, pp. 1–78. MR 1421822 | Zbl 0862.53031
[4] Capogna, L., Le Donne, E.: Smoothness of subRiemannian isometries. Amer. J. Math. 138 (2016), no. 5, 1439–1454. DOI 10.1353/ajm.2016.0043 | MR 3553396 | Zbl 1370.53030
[5] Godoy Molina, M., Grong, E., Markina, I., Silva Leite, F.: An intrinsic formulation of the problem on rolling manifolds. J. Dyn. Control Syst. 18 (2012), no. 2, 181–214. DOI 10.1007/s10883-012-9139-2 | MR 2914415
[6] Gromov, M.: Carnot-Carathéodory spaces seen from within. Sub-Riemannian geometry, Progr. Math., vol. 144, Birkhäuser, Basel, 1996, pp. 79–323. MR 1421823 | Zbl 0864.53025
[7] Grong, E.: Controllability of rolling without twisting or slipping in higher dimensions. SIAM J. Control Optim. 50 (2012), no. 4, 2462–2485. DOI 10.1137/110829581 | MR 2974746
[8] Grong, E.: Canonical connections on sub-Riemannian manifolds with constant symbol. arXiv preprint arXiv:2010.05366 (2020).
[9] Le Donne, E., Ottazzi, A.: Isometries of Carnot groups and sub-Finsler homogeneous manifolds. J. Geom. Anal. 26 (2016), no. 1, 330–345. DOI 10.1007/s12220-014-9552-8 | MR 3441517 | Zbl 1343.53029
[10] Lee, J.M.: Riemannian manifolds. Grad. Texts in Math., vol. 176, Springer-Verlag, New York, 1997, An introduction to curvature. MR 1468735
[11] Lee, J.M.: Introduction to smooth manifolds. second ed., Graduate Texts in Mathematics, vol. 218, Springer, New York, 2013. MR 2954043
[12] Montgomery, R.: A tour of subriemannian geometries, their geodesics and applications. Math. Surveys Monogr., vol. 91, American Mathematical Society, Providence, RI, 2002. MR 1867362 | Zbl 1044.53022
[13] Morimoto, T.: Geometric structures on filtered manifolds. Hokkaido Math. J. 22 (1993), no. 3, 263–347. DOI 10.14492/hokmj/1381413178 | MR 1245130 | Zbl 0801.53019
[14] Morimoto, T.: Cartan connection associated with a subriemannian structure. Differential Geom. Appl. 26 (2008), no. 1, 75–78. DOI 10.1016/j.difgeo.2007.12.002 | MR 2393974 | Zbl 1147.53027
[15] Sharpe, R.W.: Differential geometry. Grad. Texts in Math., vol. 166, Springer-Verlag, New York, 1997, Cartan's generalization of Klein's Erlangen program, With a foreword by S. S. Chern. MR 1453120 | Zbl 0876.53001
[16] Strichartz, R.S.: Sub-Riemannian geometry. J. Differential Geom. 24 (1986), no. 2, 221–263. DOI 10.4310/jdg/1214440436 | MR 0862049 | Zbl 0609.53021
Partner of
EuDML logo