Previous |  Up |  Next

Article

Title: Curvature and the equivalence problem in sub-Riemannian geometry (English)
Author: Grong, Erlend
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 58
Issue: 5
Year: 2022
Pages: 295-327
Summary lang: English
.
Category: math
.
Summary: These notes give an introduction to the equivalence problem of sub-Riemannian manifolds. We first introduce preliminaries in terms of connections, frame bundles and sub-Riemannian geometry. Then we arrive to the main aim of these notes, which is to give the description of the canonical grading and connection existing on sub-Riemann manifolds with constant symbol. These structures are exactly what is needed in order to determine if two manifolds are isometric. We give three concrete examples, which are Engel (2,3,4)-manifolds, contact manifolds and Cartan (2,3,5)-manifolds. These notes are an edited version of a lecture series given at the 42nd Winter school: Geometry and Physics, Srní, Czech Republic, mostly based on [8] and other earlier work. However, the work on Engel (2,3,4)-manifolds is original research, and illustrate the important special case were our model has the minimal set of isometries. (English)
Keyword: sub-Riemannian geometry
Keyword: equivalence problem
Keyword: frame bundle
Keyword: Cartan connection
Keyword: flatness theorem
MSC: 53C17
MSC: 58A15
idZBL: Zbl 07655750
idMR: MR4529821
DOI: 10.5817/AM2022-5-295
.
Date available: 2022-11-28T12:32:33Z
Last updated: 2023-03-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151156
.
Reference: [1] Agrachev, A., Barilari, D., Boscain, U.: A comprehensive introduction to sub-Riemannian geometry.Cambridge Stud. Adv. Math., vol. 181, Cambridge University Press, Cambridge, 2020. MR 3971262
Reference: [2] Alekseevsky, D., Medvedev, A., Slovák, J.: Constant curvature models in sub-Riemannian geometry.J. Geom. Phys. 138 (2019), 241–256. MR 3945041, 10.1016/j.geomphys.2018.09.013
Reference: [3] Bellaïche, A.: The tangent space in sub-Riemannian geometry.Sub-Riemannian geometry, Progr. Math., vol. 144, Birkhäuser, Basel, 1996, pp. 1–78. Zbl 0862.53031, MR 1421822
Reference: [4] Capogna, L., Le Donne, E.: Smoothness of subRiemannian isometries.Amer. J. Math. 138 (2016), no. 5, 1439–1454. Zbl 1370.53030, MR 3553396, 10.1353/ajm.2016.0043
Reference: [5] Godoy Molina, M., Grong, E., Markina, I., Silva Leite, F.: An intrinsic formulation of the problem on rolling manifolds.J. Dyn. Control Syst. 18 (2012), no. 2, 181–214. MR 2914415, 10.1007/s10883-012-9139-2
Reference: [6] Gromov, M.: Carnot-Carathéodory spaces seen from within.Sub-Riemannian geometry, Progr. Math., vol. 144, Birkhäuser, Basel, 1996, pp. 79–323. Zbl 0864.53025, MR 1421823
Reference: [7] Grong, E.: Controllability of rolling without twisting or slipping in higher dimensions.SIAM J. Control Optim. 50 (2012), no. 4, 2462–2485. MR 2974746, 10.1137/110829581
Reference: [8] Grong, E.: Canonical connections on sub-Riemannian manifolds with constant symbol.arXiv preprint arXiv:2010.05366 (2020).
Reference: [9] Le Donne, E., Ottazzi, A.: Isometries of Carnot groups and sub-Finsler homogeneous manifolds.J. Geom. Anal. 26 (2016), no. 1, 330–345. Zbl 1343.53029, MR 3441517, 10.1007/s12220-014-9552-8
Reference: [10] Lee, J.M.: Riemannian manifolds.Grad. Texts in Math., vol. 176, Springer-Verlag, New York, 1997, An introduction to curvature. MR 1468735
Reference: [11] Lee, J.M.: Introduction to smooth manifolds.second ed., Graduate Texts in Mathematics, vol. 218, Springer, New York, 2013. MR 2954043
Reference: [12] Montgomery, R.: A tour of subriemannian geometries, their geodesics and applications.Math. Surveys Monogr., vol. 91, American Mathematical Society, Providence, RI, 2002. Zbl 1044.53022, MR 1867362
Reference: [13] Morimoto, T.: Geometric structures on filtered manifolds.Hokkaido Math. J. 22 (1993), no. 3, 263–347. Zbl 0801.53019, MR 1245130, 10.14492/hokmj/1381413178
Reference: [14] Morimoto, T.: Cartan connection associated with a subriemannian structure.Differential Geom. Appl. 26 (2008), no. 1, 75–78. Zbl 1147.53027, MR 2393974, 10.1016/j.difgeo.2007.12.002
Reference: [15] Sharpe, R.W.: Differential geometry.Grad. Texts in Math., vol. 166, Springer-Verlag, New York, 1997, Cartan's generalization of Klein's Erlangen program, With a foreword by S. S. Chern. Zbl 0876.53001, MR 1453120
Reference: [16] Strichartz, R.S.: Sub-Riemannian geometry.J. Differential Geom. 24 (1986), no. 2, 221–263. Zbl 0609.53021, MR 0862049, 10.4310/jdg/1214440436
.

Files

Files Size Format View
ArchMathRetro_058-2022-5_5.pdf 728.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo