[1] Chen, H.-F., Guo, L.:
Strong consistency of recursive identification by no use of persistent excitation condition. Acta Math. Appl. Sinica 2 (1985), 2, 133-145.
DOI
[2] Chen, H.-F., Guo, L.:
Continuous-time stochastic adaptive tracking—robustness and asymptotic properties. SIAM J. Control Optim. 28 (1990), 3, 513-527.
DOI |
MR 1047420
[3] Chen, H.-F., Guo, L.:
Identification and Stochastic Adaptive Control. Volume 5. Springer Science Business Media, 1991.
MR 1134780
[4] Doyle, J. C., Francis, B. A., Tannenbaum, A. R.:
Feedback Control Theory. Courier Corporation, 2013.
MR 1200235
[5] Durrett, R.:
Probability: Theory and Examples. Vol. 49. Cambridge University Press, 2019.
MR 3930614
[6] Gan, D., Liu, Z. X.:
On the stability of Kalman filter with random coefficients. IFAC-PapersOnLine 53 (2020), 2, 2397-2402.
DOI
[7] Guo, L.:
Stability of recursive stochastic tracking algorithms. SIAM J. Control Optim. 32 (1994), 5, 1195-1225, 1994.
DOI |
MR 1288247
[8] Guo, L.:
Convergence and logarithm laws of self-tuning regulators. Automatica 31 (1995), 3, 435-450.
DOI |
MR 1321012
[9] Guo, L.: Time-Varying Stochastic Systems, Stability and Adaptive Theory. Second Edition. Science Press, Beijing 2020.
[10] Guo, L., Ljung, L., Priouret, P.:
Performance analysis of the forgetting factor rls algorithm. Int. J. Adaptive Control Signal Process. 7 (1993), 6, 525-537.
DOI |
MR 1255909
[11] Haykin, S.: Radar signal processing. IEEE Signal Process. Magazine 2 (1993), 2, 2-18.
[13] Lai, T. L., Wei, Ch. Z.:
Least squares estimates in stochastic regression models with applications to identification and control of dynamic systems. Ann. Statist. 10 (1982), 1, 154-166.
DOI |
MR 0642726
[14] Li, J., Ding, F., Yang, G.:
Maximum likelihood least squares identification method for input nonlinear finite impulse response moving average systems. Math. Comput. Modell. 55 (2012), 3-4, :442-450.
MR 2887389
[15] Li, J., Stoica, P.: MIMO Radar Signal Processing. John Wiley and Sons, 2008.
[16] Liu, Y., Ding, F.:
Convergence properties of the least squares estimation algorithm for multivariable systems. Applied Math. Modell. 37 (2013), 1-2, 476-483.
DOI |
MR 2994195
[17] Marelli, D., Fu, M.:
A continuous-time linear system identification method for slowly sampled data. IEEE Trans. Signal Process. 58 (2010), 5, 2521-2533.
DOI |
MR 2789402
[18] Moore, J. B.:
On strong consistency of least squares identification algorithms. Automatica 14 (1978), 5, 505-509.
DOI
[19] Niedzwiecki, M., Guo, L.:
Nonasymptotic results for finite-memory wls filters. In: Proc. 28th IEEE Conference on Decision and Control, Vol. 2, 1989, pp. 1785-1790.
MR 1039029
[20] Richards, F. S. G.:
A method of maximum-likelihood estimation. J. Roy. Statist. Soc,: Series B (Methodological) 23 (1961), 2, 469-475.
DOI |
MR 0132633
[21] Sen, A., Sinha, N. K.:
On-line estimation of the parameters of a multivariable system using matrix pseudo-inverse. Int. J. Systems Sci. 7 (1976), 4, 461-471.
DOI |
MR 0424314
[22] Subudhi, B., Jena, D.: Nonlinear system identification of a twin rotor mimo system. In: IEEE Region 10 Conference 2009, pp. 1-6.
[23] Vaezi, M., Izadian, A.:
Piecewise affine system identification of a hydraulic wind power transfer system. IEEE Trans. Control Systems Technol. 23 (2015), 6, :2077-2086.
DOI
[24] Wang, W., Ding, F., Dai, J.:
Maximum likelihood least squares identification for systems with autoregressive moving average noise. Appl. Math. Modell. 36 (2012), 5, 1842-1853.
DOI |
MR 2878151
[25] Vogels, T. P., Rajan, K., Abbott, L. F.:
Neural network dynamics. Ann. Rev. Neurosci. 28 (2005), 357-376.
DOI |
MR 1985615
[26] Widrow, B., Stearns, S. D.: Adaptive Signal Processing. Prentice-Hall Englewood Cliffs, NJ 1985.
[27] Zhang, Y.:
Unbiased identification of a class of multi-input single-output systems with correlated disturbances using bias compensation methods. Math. Computer Modell. 53 (2011), 9-10, 1810-1819.
DOI |
MR 2782867
[28] Zhang, Y., Cui, G.:
Bias compensation methods for stochastic systems with colored noise. Appl. Math- Modell. 35 (2011), 4, 1709-1716.
DOI |
MR 2763812