Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
positive solution; bifurcation curve; Minkowski-curvature problem, logistic problem
Summary:
We study the exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems$$ \begin {cases} -[\phi (u^{\prime })]^{\prime }=\lambda u^{p} \Bigl (1-\dfrac {u}{N} \Bigr ) & \text {in} \^^M( -L,L) , \\ u(-L)=u(L)=0,\end {cases} $$ where $p>1$, $N>0$, $\lambda >0$ is a bifurcation parameter, $L>0$ is an evolution parameter, and $\phi (u)$ is either $\phi (u)=u$ or $\phi (u)=u/\sqrt {1-u^{2}}$. We prove that the corresponding bifurcation curve is $\subset $-shape. Thus, the exact multiplicity of positive solutions can be obtained.
References:
[1] Bartnik, R., Simon, L.: Spacelike hypersurfaces with prescribed boundary values and mean curvature. Commun. Math. Phys. 87 (1982), 131-152. DOI 10.1007/BF01211061 | MR 0680653 | Zbl 0512.53055
[2] Chafee, N., Infante, E. F.: A bifurcation problem for a nonlinear partial differential equation of parabolic type. Appl. Anal. 4 (1974), 17-37. DOI 10.1080/00036817408839081 | MR 0440205 | Zbl 0296.35046
[3] Coelho, I., Corsato, C., Obersnel, F., Omari, P.: Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation. Adv. Nonlinear Stud. 12 (2012), 621-638. DOI 10.1515/ans-2012-0310 | MR 2976056 | Zbl 1263.34028
[4] Corsato, C.: Mathematical Analysis of Some Differential Models Involving the Euclidean or the Minkowski Mean Curvature Operator: Ph.D. Thesis. University of Trieste, Trieste (2015), Available at http://hdl.handle.net/10077/11127\kern0pt
[5] Feynman, R. P., Leighton, R. B., Sands, M.: The Feynman Lectures on Physics. II. Mainly Electromagnetism and Matter. Addison-Wesley, Reading (1964). MR 0213078 | Zbl 0131.38703
[6] Guedda, M., Véron, L.: Bifurcation phenomena associated to the $p$-Laplace operator. Trans. Am. Math. Soc. 310 (1988), 419-431. DOI 10.1090/S0002-9947-1988-0965762-2 | MR 0965762 | Zbl 0713.34049
[7] Huang, S.-Y.: Classification and evolution of bifurcation curves for the one-dimensional Minkowski-curvature problem and its applications. J. Differ. Equations 264 (2018), 5977-6011. DOI 10.1016/j.jde.2018.01.021 | MR 3765772 | Zbl 1390.34051
[8] Huang, S.-Y.: Exact multiplicity and bifurcation curves of positive solutions of a one- dimensional Minkowski- curvature problem and its application. Commun. Pure Appl. Anal. 17 (2018), 1271-1294. DOI 10.3934/cpaa.2018061 | MR 3809123 | Zbl 1398.34034
[9] Huang, S.-Y.: Bifurcation diagrams of positive solutions for one-dimensional Minkowski- curvature problem and its applications. Discrete Contin. Dyn. Syst. 39 (2019), 3443-3462. DOI 10.3934/dcds.2019142 | MR 3959436 | Zbl 1419.34086
[10] Huang, S.-Y.: Global bifurcation and exact multiplicity of positive solutions for the one-dimensional Minkowski-curvature problem with sign-changing nonlinearity. Commun. Pure Appl. Anal. 18 (2019), 3267-3284. DOI 10.3934/cpaa.2019147 | MR 3985384 | Zbl 1493.34056
[11] Hung, K.-C., Huang, S.-Y., Wang, S.-H.: A global bifurcation theorem for a positone multiparameter problem and its application. Discrete Contin. Dyn. Syst. 37 (2017), 5127-5149. DOI 10.3934/dcds.2017222 | MR 3668355 | Zbl 1378.34041
[12] Hung, K.-C., Wang, S.-H.: Global bifurcation and exact multiplicity of positive solutions for a positone problem with cubic nonlinearity and their applications. Trans. Am. Math. Soc. 365 (2013), 1933-1956. DOI 10.1090/S0002-9947-2012-05670-4 | MR 3009649 | Zbl 1282.34031
[13] Laetsch, T.: The number of solutions of a nonlinear two point boundary value problem. Indiana Univ. Math. J. 20 (1970), 1-13. DOI 10.1512/iumj.1970.20.20001 | MR 0269922 | Zbl 0215.14602
[14] McCabe, P. M., Leach, J. A., Needham, D. J.: The evolution of travelling waves in fractional order autocatalysis with decay. I. Permanent from travelling waves. SIAM J. Appl. Math. 59 (1999), 870-899. DOI 10.1137/S003613999631259 | MR 1661239 | Zbl 0938.35075
[15] Shi, J., Shivaji, R.: Persistence in reaction diffusion models with weak Allee effect. J. Math. Biol. 52 (2006), 807-829. DOI 10.1007/s00285-006-0373-7 | MR 2235529 | Zbl 1110.92055
[16] Takeuchi, S., Yamada, Y.: Asymptotic properties of a reaction-diffusion equation with degenerate $p$-Laplacian. Nonlinear Anal., Theory Methods Appl., Ser. A 42 (2000), 41-61. DOI 10.1016/S0362-546X(98)00329-0 | MR 1769251 | Zbl 0961.35075
[17] Verhulst, P. F.: Notice sur la loi que la population poursuit dans son accroissement. Corresp. Math. Phys. 10 (1838), 113-121 French.
[18] Wang, M.-H., Kot, M.: Speeds of invasion in a model with strong or weak Allee effects. Math. Biosci. 171 (2001), 83-97. DOI 10.1016/S0025-5564(01)00048-7 | MR 1839210 | Zbl 0978.92033
[19] Xin, J.: Front propagation in heterogeneous media. SIAM Rev. 42 (2000), 161-230. DOI 10.1137/S0036144599364296 | MR 1778352 | Zbl 0951.35060
Partner of
EuDML logo