Author: Petzeltová, Hana
-
Feireisl, Eduard; Petzeltová, Hana:
On the domain dependence of solutions to the two-phase Stefan problem.
(English).
Applications of Mathematics,
vol. 45
(2000),
issue 2,
pp. 131-144
-
Petzeltová, Hana:
Local center manifold for parabolic equations with infinite delay.
(English).
Mathematica Bohemica,
vol. 119
(1994),
issue 3,
pp. 285-304
-
Petzeltová, Hana:
Solution semigroup and invariant manifolds for functional equations with infinite delay.
(English).
Mathematica Bohemica,
vol. 118
(1993),
issue 2,
pp. 175-193
-
Petzeltová, Hana:
The Hopf bifurcation theorem for parabolic equations with infinite delay.
(English).
Mathematica Bohemica,
vol. 116
(1991),
issue 2,
pp. 181-190
-
Milota, Jaroslav; Petzeltová, Hana:
Continuous dependence for semilinear parabolic functional equations without uniqueness.
(English).
Časopis pro pěstování matematiky,
vol. 110
(1985),
issue 4,
pp. 394-402
-
Milota, Jaroslav; Petzeltová, Hana:
An existence theorem for semilinear functional parabolic equations.
(English).
Časopis pro pěstování matematiky,
vol. 110
(1985),
issue 3,
pp. 274-288
-
Petzeltová, Hana; Štědrý, Milan:
Time-periodic solutions of telegraph equations in $n$ spatial variables.
(English).
Časopis pro pěstování matematiky,
vol. 109
(1984),
issue 1,
pp. 60-73
-
Petzeltová, Hana:
Application of Moser's method to a certain type of evolution equations.
(English).
Czechoslovak Mathematical Journal,
vol. 33
(1983),
issue 3,
pp. 427-434
-
Petzeltová, Hana:
Remark on a Newton-Moser type method.
(English).
Commentationes Mathematicae Universitatis Carolinae,
vol. 21
(1980),
issue 4,
pp. 719-725
-
Petzeltová, Hana; Vrbová, Pavla:
Factorization in the algebra of rapidly decreasing functions on ${\bf R}_n$.
(English).
Commentationes Mathematicae Universitatis Carolinae,
vol. 19
(1978),
issue 3,
pp. 489-499
-
Petzeltová, Hana; Vrbová, Pavla:
A remark on small divisors problems.
(English).
Czechoslovak Mathematical Journal,
vol. 28
(1978),
issue 1,
pp. 1-12
-
Petzeltová, Hana:
Periodic solutions of the equation $u_{tt}+u_{xxxx}=\varepsilon f(\cdot,\cdot,u,u_t)$.
(English).
Czechoslovak Mathematical Journal,
vol. 23
(1973),
issue 2,
pp. 269-285
Partner of