39A23
-
Abo-Zeid, Raafat:
Global behavior of the difference equation $x_{n+1}=\frac{ax_{n-3} }{b+ cx_{n-1}x_{n-3}}$.
(English).
Archivum Mathematicum,
vol. 51
(2015),
issue 2,
pp. 77-85
-
Xu, Changjin; Li, Peiluan:
Dynamics in a discrete predator-prey system with infected prey.
(English).
Mathematica Bohemica,
vol. 139
(2014),
issue 3,
pp. 511-534
-
Liu, Xin-Ge; Tang, Mei-Lan:
Existence of positive periodic solutions of higher-order functional difference equations.
(English).
Applications of Mathematics,
vol. 59
(2014),
issue 1,
pp. 25-36
-
Abo-Zeid, Raafat:
Global behavior of a third order rational difference equation.
(English).
Mathematica Bohemica,
vol. 139
(2014),
issue 1,
pp. 25-37
-
Apreutesei, G.; Apreutesei, N.:
Second order difference inclusions of monotone type.
(English).
Mathematica Bohemica,
vol. 137
(2012),
issue 2,
pp. 123-130
-
Tang, Mei-Lan; Liu, Xin-Ge:
Positive periodic solution for ratio-dependent $n$-species discrete time system.
(English).
Applications of Mathematics,
vol. 56
(2011),
issue 6,
pp. 577-589
-
Zayed, E. M. E.; El-Moneam, M. A.:
On the rational recursive sequence $ x_{n+1}=\dfrac {\alpha_0x_n+\alpha_1x_{n-l}+\alpha _2x_{n-k}} {\beta_0x_n+\beta_1x_{n-l}+\beta_2x_{n-k}}$.
(English).
Mathematica Bohemica,
vol. 135
(2010),
issue 3,
pp. 319-336
-
Elabbasy, E. M.; El-Metwally, H.; Elsayed, E. M.:
On the difference equation $x_{n+1}=\dfrac{a_{0}x_{n}+a_{1}x_{n-1}+\dots +a_{k}x_{n-k}}{b_{0}x_{n}+b_{1}x_{n-1}+\dots +b_{k}x_{n-k}} $.
(English).
Mathematica Bohemica,
vol. 133
(2008),
issue 2,
pp. 133-147
-
Zayed, E. M. E.; El-Moneam, M. A.:
On the rational recursive sequence $ \ x_{n+1}=\Big ( A+\sum _{i=0}^k\alpha _ix_{n-i}\Big ) \Big / \sum _{i=0}^k\beta _ix_{n-i} $.
(English).
Mathematica Bohemica,
vol. 133
(2008),
issue 3,
pp. 225-239
Partner of