Previous |  Up |  Next

Article

Title: Semi-groups of positive contraction operators (English)
Author: Phillips, Ralph S.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 12
Issue: 2
Year: 1962
Pages: 294-313
Summary lang: Russian
.
Category: math
.
MSC: 47.50
idZBL: Zbl 0113.09901
idMR: MR0146675
DOI: 10.21136/CMJ.1962.100517
.
Date available: 2008-06-09T13:14:42Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/100517
.
Reference: [1] Garrett Birkhoff: Lattice theory.American Math. Soc. Coll. Publ. vol. 25, 1948. MR 0029876
Reference: [2] W. Feller: On the integro-differential equations of purely discontinuous Markoff processes.Trans. Amer. Math. Soc., vol. 48, 1940, 488-515. Zbl 0025.34704, MR 0002697, 10.1090/S0002-9947-1940-0002697-3
Reference: [3] W. Feller: On boundaries and lateral conditions for the Kolmogorov differential equations.Annals of Math. (2) vol. 65, 1957, 527-570. Zbl 0084.35503, MR 0090928, 10.2307/1970064
Reference: [4] E. Hille, R. S. Phillips: Functional analysis and semi-groups.Amer. Math. Soc. Coll. Publ., vol. 31, 1957. MR 0089373
Reference: [5] W. B. Jurkat: On semi-groups of positive matrices.Parts I and II, Scripta Math., vol. 24, 1959, 123-131 and 207-218. Zbl 0091.13002, MR 0121833
Reference: [6] S. Karlin, J. L. McGregor: The differential equations of birth-and-death processes and the Stieltjes moment problem.Trans. Amer. Math. Soc., vol. 85, 1957, 489-546. Zbl 0091.13801, MR 0091566, 10.1090/S0002-9947-1957-0091566-1
Reference: [7] Tosio Kato: On semi-groups generated by Kolmogoroff's differential equations.Jr. Math. Soc. of Japan, vol. 6, 1954, 1 - 15. MR 0062343
Reference: [8] David G. Kendall: Unitary dilations of one-parameter semi-groups of Markov transition operators, and the corresponding integral representations for Markov processes with a countable infinity of states.Proc. London Math. Soc., vol. 9, 1959, 417 - 431. MR 0116390
Reference: [9] M. G. Krein: The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications.Recueil. Math., vol. 20, 1947, 431 - 495. Zbl 0029.14103, MR 0024574
Reference: [10] W. Ledermann, G. E. H. Reuter: On differential equations for the transition probabilities of Markov processes with enumerably many states.Proc. Cambridge Phil. Soc., vol. 49, 1953, 247-262. MR 0053343
Reference: [11] G. Lumer, R. S. Phillips: Dissipative operators in Banach spaces.Pacific Jr. of Math., vol. 11, 1961, 679-698. MR 0132403, 10.2140/pjm.1961.11.679
Reference: [12] R. S. Phillips: Dissipative operators and hyperbolic systems of partial differential equations.Trans. Amer. Math. Soc., vol. 90, 1959, 193-254. MR 0104919, 10.1090/S0002-9947-1959-0104919-1
Reference: [13] R. S. Phillips: The extension of dual subspaces invariant under an algebra.Proc. of the International Symposium on Linear Spaces, Israel 1960, 366-398. MR 0133686
Reference: [14] G. E. H. Reuter: Denumerable Markov processes and the associated contraction semi-groups on $l_1$.Acta Math., vol. 97, 1957, 1 - 46. MR 0102123
Reference: [15] G. E. H. Reuter: Denumerable Markov processes. II.Jr. London Math. Soc., vol. 34, 1959, 81-91. Zbl 0089.13803, MR 0102124
.

Files

Files Size Format View
CzechMathJ_12-1962-2_10.pdf 2.737Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo