Previous |  Up |  Next

Article

Title: Semigroups certain of whose subsemigroups have identities (English)
Author: Petrich, Mario
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 16
Issue: 2
Year: 1966
Pages: 186-198
Summary lang: Russian
.
Category: math
.
MSC: 20.93
idZBL: Zbl 0143.03203
idMR: MR0200370
DOI: 10.21136/CMJ.1966.100723
.
Date available: 2008-06-09T13:29:08Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/100723
.
Reference: [1] R. H. Brück: A survey of binary systems.Springer, Berhn, 1958. MR 0093552
Reference: [2] A. H. Clifford, G. B. Preston: The algebraic theory of semigroups, Vol. I.Math. Surveys No. 7, Amer. Math. Soc, Providence, R. I., 1961. Zbl 0111.03403, MR 0132791
Reference: [3] P. H. H. Fantham: On the classification of a certain type of semigroup.Proc. London Math. Soc. (3) 10 (1960), 409-427. Zbl 0228.20035, MR 0121411
Reference: [4] B. Kolibiarová: On semigroups, every subsemigroup of which has a left identify.Mat.-Fyz. Časopis Slovensk. Akad. Vied 7 (1957), 177-182 (Slovak; Russian and English summaries). MR 0100643
Reference: [5] B. Kolibiarová: On semigroups, every left ideal of which has a one-sided identity.Mat.-Fyz. Časopis Slovensk. Akad. Vied 10 (1960), 9-17 (Slovak; Russian and German summaries). MR 0132115
Reference: [6] B. Kolibiarová: On semigroups, every principal left ideal of which has an identity.Mat.-Fyz. Časopis Slovensk. Akad. Vied 11 (1961), 275-281 (Slovak; Russian and German summaries).
Reference: [7] M. Petrich: Sur certaines classes de demi-groupes, I.Acad. Roy. Belg. Bull. CI. Sci. 49 (1963), 785-798. Zbl 0124.25704, MR 0166283
Reference: [8] M. Petrich: The maximal semilattice decomposition of a semigroup.Math. Zeitschrift 85 (1964), 68-82. Zbl 0124.25801, MR 0167552, 10.1007/BF01114879
Reference: [9] Š. Schwarz: Contribution to the theory of periodic semigroups.Czechoslovak Math. J. 3 (1953), 7-21 (Russian; English summary). MR 0061593
Reference: [10] N. N. Vorob'ev: Associative systems of which every subsystem has an identity.Doklady Akad. Nauk SSSR 88 (1953), 393-396 (Russian). MR 0053077
Reference: [11] N. N. Vorob'ev: On associative systems of which every left ideal has an identity.Leningrad. Gos. Ped. Inst. Uc. Zap. 103 (1955), 83-90 (Russian).
.

Files

Files Size Format View
CzechMathJ_16-1966-2_3.pdf 1.631Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo