Title:
|
Stetige Abhängigkeit von einem Parameter und invariante Mannigfaltigkeiten für verallgemeinerte Differentialgleichungen (German) |
Title:
|
Continuous dependence on a parameter and invariant manifolds for generalized differential equations (English) |
Author:
|
Schwabik, Štefan |
Language:
|
German |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
19 |
Issue:
|
3 |
Year:
|
1969 |
Pages:
|
398-427 |
Summary lang:
|
German |
. |
Category:
|
math |
. |
MSC:
|
34.04 |
idZBL:
|
Zbl 0186.15901 |
idMR:
|
MR0252726 |
DOI:
|
10.21136/CMJ.1969.100912 |
. |
Date available:
|
2008-06-09T13:42:57Z |
Last updated:
|
2020-07-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/100912 |
. |
Reference:
|
[1] Jaroslav Kurzweil: Generalized ordinary differential equations and continuous dependence on a parameter.Czech. Math. J. 7 (82), (1957), 418-449, MR 0111875 |
Reference:
|
[2] Jaroslav Kurzweil: Generalized differential equations.Czech. Math. J. 8 (83) (1958), 360-388, MR 0111878 |
Reference:
|
[3] Jaroslav Kurzweil: Об обобщенных обыкновенных дифференциальных уравнениях.обладающих разрывными решениями, РММ, XXII, 1, (1958), 27-45. MR 0111876 |
Reference:
|
[4] Jaroslav Kurzweil: Exponentially stable integral manifolds, averaging principle and continuous dependence on a parameter.Czech. Math. J. 16 (91) (1966), 380-423, 463-492. MR 0206440 |
Reference:
|
[5] Jaroslav Kurzweil: Invariant manifolds for flows.Proc. Symp. Differential Equations and Dynamical Systems, Academic Press Inc., New York, 1967, 431-468. MR 0218698 |
Reference:
|
[6] Jaroslav Kurzweil: Инвариантные множества дифференциальных систем.Dif. uravnenija, (1968), IV, ISS-191. |
Reference:
|
[7] Stefan Schwabik: Über ein Differentialgleichungssystem mit unstetigen Lösungen endlicher Variation.Zeitschrift für angewandte Mathematik und Mechanik, Sonderheft GAMM, Band 48(1968), T31--T32. |
Reference:
|
[8] Ivo Vrkoč: The class of functions fulfilling the inequality $$\Vert f(x+z)-f(x)-f(y+z)+f(y)\Vert \leqq\Vert x-y\Vert \omega (\Vert z\Vert ).$$.Czech. Math. J., 19 (94) (1969), 500-514. MR 0247466 |
. |