Previous |  Up |  Next

Article

Title: The third boundary value problem in potential theory (English)
Author: Netuka, Ivan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 22
Issue: 4
Year: 1972
Pages: 554-580
Summary lang: English
.
Category: math
.
MSC: 31B20
MSC: 47A50
idZBL: Zbl 0242.31007
idMR: MR0313528
DOI: 10.21136/CMJ.1972.101126
.
Date available: 2008-06-09T13:58:44Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101126
.
Reference: [1] M. Brelot: Eléments de la théorie classique du potentiel.Les cours de Sorbonne, Paris, 1959. Zbl 0084.30903, MR 0106366
Reference: [2] Ju. D. Burago, V. G. Mazja: S: ome questions in potential theory and function theory for regions with irregular boundaries.(Russian), Zapiski nauč. sem. Leningrad, otd. MIAN 3 (1967).
Reference: [3] Ju. D. Burago V. G. Mazja, V. D. Sapoznikova: On the theory of potentials of a double and a simple layer for regions with irregular boundaries.(Russian), Problems Math. Anal. Boundary Value Problems Integr. Equations (Russian), 3 - 34, Izdat. Leningrad. Univ.,Leningrad, 1966. MR 0213596
Reference: [4] J. Král: The Fredholm method in potential theory.Trans. Amer. Math. Soc. 125 (1966), 511-547. MR 0209503, 10.2307/1994580
Reference: [5] N. L. Landkof: Fundamentals of modern potential theory.(Russian), Izdat. Nauka, Moscow, 1966. MR 0214795
Reference: [6] I. Netuka: The Robin problem in potential theory.Comment. Math. Univ. Carolinae 12 (1971), 205-211. Zbl 0215.42602, MR 0287021
Reference: [7] I. Netuka: Generalized Robin problem in potential theory.Czechoslovak Math. J. 22 (97) (1972), 312-324. Zbl 0241.31008, MR 0294673
Reference: [8] I. Netuka: An operator connected with the third boundary value problem in potential theory.Czechoslovak Math. J. 22 (97) (1972), 462-489. Zbl 0241.31009, MR 0316733
Reference: [9] J. Plemelj: Potentialtheoretische Untersuchungen.Leipzig, 1911.
Reference: [10] J. Radon: Über die Randwertaufgaben beim logaritmischen Potential.Sitzungsber. Akad. Wiss. Wien (2a) 128 (1919), 1123-1167.
Reference: [11] F. Riesz, B. Sz. Nagy: Leçons d'analyse fonctionelle.Budapest, 1952.
Reference: [12] S. Saks: Theory of the integral.Hafner Publishing Соmp., New York, 1937. Zbl 0017.30004
Reference: [13] V. D. Sapoznikova: Solution of the third boundary value problem by the method of potential theory for regions with irregular boundaries (Russian).Problems Math. Anal. Boundary Value Problems Integr. Equations (Russian), 35-44, Izdat. Leningrad. Univ., Leningrad, 1966. MR 0213597
Reference: [14] L. Schwartz: Théorie des distributions.Hermann, Paris, 1950. Zbl 0037.07301, MR 0209834
Reference: [15] K. Yosida: Functional analysis.Springer Verlag, Berlin, 1965. Zbl 0126.11504
.

Files

Files Size Format View
CzechMathJ_22-1972-4_6.pdf 2.313Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo