Previous |  Up |  Next

Article

Title: Mixed problem for semilinear hyperbolic equation of second order with Dirichlet boundary condition (English)
Author: Doktor, Alexander
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 23
Issue: 1
Year: 1973
Pages: 95-122
Summary lang: English
.
Category: math
.
MSC: 35L20
idZBL: Zbl 0255.35061
idMR: MR0348276
.
Date available: 2008-06-09T14:00:23Z
Last updated: 2016-04-06
Stable URL: http://hdl.handle.net/10338.dmlcz/101149
.
Reference: [1] B. Э. Аболиня A. Д. Мышкис: О смешанной задаче для линейной гиперболической системы на плоскости.Уч. зап. Латвии, гос. унив. XX (1958), 87-104. Zbl 1225.70002
Reference: [2] В. Э. Аболиня А. Д. Мышкис: Смешанная задача для почти линейной гиперболической системы на плоскости.Матем. Сборник 50 (1960), 423-442. Zbl 1225.94001, MR 0111939
Reference: [3] R. Courant: Partial Differential Equations.(Russian) Moskva 1964. Zbl 0121.07801, MR 0180738
Reference: [4] M. Ikawa: Mixed problem for hyperbolic equation of second order.J. Math. Soc. Japan 20 (1968), 580-608. MR 0233077, 10.2969/jmsj/02040580
Reference: [5] M. Ikawa: A Mixed Problem for Hyperbolic Equation of Second Order with a First Order Derivative Boundary Condition.Publ. RIMS Kyoto Univ. 5 (1969), 119-147. MR 0277890, 10.2977/prims/1195194627
Reference: [6] M. Ikawa: A Mixed Problem for Hyperbolic Equation of Second Order with Non-homogeneous Neumann Type Boundary Condition.Osaka J. Math. 6 (1969), 339-374. MR 0277894
Reference: [7] M. Ikawa: On the Mixed Problem for Hyperbolic Equation of Second Order with the Neumann Boundary Condition.Osaka J. Math. 7 (1970), 203 - 223. MR 0283395
Reference: [8] H.-O. Kreiss: Initial Boundary Value Problems for Hyperbolic Systems.Comm. Pure Appl. Math. 9 23 (1970), 277-298. Zbl 0215.16801, MR 0437941, 10.1002/cpa.3160230304
Reference: [9] O. A. Ладыжeнcкая: Смешанная задача для гиперболического уравнения.Москва 1953.
Reference: [10] S. Mizohata: Lectures on the Cauchy Problem.Tata Institute of Fundamental Research, Bombay 1965. MR 0219881
Reference: [11] S. Mizohata: Quelques problèmes au bord, du type mixte, pour des équations hyperboliques.Séminaire sur les équations aux dérivées partielles. Collége de France (1966-67), 23-60. MR 0390442
Reference: [12] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia Praha 1967. MR 0227584
Reference: [13] Б. Л. Рождественский H. H. Яненко: Системы квазилинейных уравнений.Москва 1968. Zbl 1236.41005
Reference: [14] R. Sakamoto: Mixed Problems for Hyperbolic Equations I. Energy Inequalities.J. Math. Kyoto Univ. 10 (1970), 349-373. Zbl 0203.10001, MR 0283400
Reference: [15] R. Sakamoto: Mixed Problems for Hyperbolic Equations II.J. Math. Kyoto Univ. 10 (1970), 403-417. Zbl 0206.40101, MR 0283401
Reference: [16] R. Sakamoto: Iterated Hyperbolic Mixed Problems.Publ. RIMS Kyoto Univ. 6 (1970), 1-42. Zbl 0225.35065, MR 0412622, 10.2977/prims/1195194186
Reference: [17] J. Sather: The initial-boundary value problem for a non-linear hyperbolic equation in relativistic quantum mechanics.J. Math. Mech. vol. 16, 1966/1, 27-50. Zbl 0141.28803, MR 0196301
Reference: [18] J. Sather: The existence of a Global Classical Solution of the Initial-Boundary Value Problem for $\square u+u\sp{3}=f$.Arch. Rat. Mech. Anal. 22 (1966), 292-307. Zbl 0141.28802, MR 0197965, 10.1007/BF00285421
Reference: [19] С Л. Соболев: Некоторые пнименения функционального анализа в математической физике.Новосибирск 1962. Zbl 1005.68507
.

Files

Files Size Format View
CzechMathJ_23-1973-1_12.pdf 2.347Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo