Previous |  Up |  Next

Article

Title: Periodic solutions to abstract differential equations (English)
Author: Straškraba, Ivan
Author: Vejvoda, Otto
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 23
Issue: 4
Year: 1973
Pages: 635-669
Summary lang: English
.
Category: math
.
MSC: 34G05
MSC: 35B10
MSC: 47A50
MSC: 47H15
idZBL: Zbl 0275.34063
idMR: MR0499577
DOI: 10.21136/CMJ.1973.101206
.
Date available: 2008-06-09T14:04:33Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101206
.
Reference: [1] С. T. Taam: Stability, periodicity, and almost periodicity of the solutions of nonlinear differential equations in Banach spaces.J. Math. Mech. 15 (1966), 849-876. MR 0196241
Reference: [2] С. T. Taam: On nonlinear diffusion equations.J. Diff. Eq., 3 (1967), 482-499. Zbl 0162.15402, MR 0217411, 10.1016/0022-0396(67)90013-7
Reference: [3] F. E. Browder: Periodic solutions of nonlinear equations of evolution in infinite dimensional spaces.Lecture Series in Differential Equations, University of Maryland, 1966.
Reference: [4] F. E. Browder: Existence of periodic solutions for nonlinear equation of evolution.Proc. Mat. Acad. Sci, 53 (1965) (1100-1103). MR 0177295, 10.1073/pnas.53.5.1100
Reference: [5] F. E. Browder: Periodic solutions of nonlinear equations of evolution in infinite dimensional spaces.Lect. Diff. Eq., 1, 71 - 96, Van Nostrand, N.Y., 1969. Zbl 0188.15602, MR 0273168
Reference: [6] L. Zend: Theorem on the existence of a periodic solution to a parabolic equation with a nonlinearity.(Russian) Vestnik Moskov. Univ., (1967), 32-35.
Reference: [7] A. A. Dezin: Operators with the first derivative and nonlocal boundary conditions.Izv. AN USSR, Ser. mat. 31 (1967), 61-86. (Russian.) MR 0213762
Reference: [8] I. B. Simoněnko: Basing of the averaging principle to abstract parabolic equations.Mat. sbornik, Novaja serija, 81 (1970), 53 - 61. (Russian.) MR 0257594
Reference: [9] K. Masuda: On the existence of periodic solutions of nonlinear differential equations.J. Рас. Sci. Univ. Tokyo, 12 (1966), 247-257. Zbl 0142.38201, MR 0197942
Reference: [10] Ju. A. Dubinskij: Periodic solutions of elliptic-parabolic equations.(Russian.) Mat. sbornik, Novaja serija, 76 (1968), 620-633. MR 0233058
Reference: [11] O. Vejvoda: Periodic solutions of a linear and weakly nonlinear wave equation in one dimension.Czech. Math. J. 14 (1964), 341-382. MR 0174872
Reference: [12] О. Vejvoda: The mixed problem and periodic solutions for a linear and weakly nonlinear wave equation in one dimension.Rozpravy ČSAV, Řada mat. a přír. věd, 80 (1970), 3, Academia, Praha. Zbl 0278.35064, MR 0310437
Reference: [13] N. Krylová О. Vejvoda: Periodic solutions to partial differential equations, especially to a biharmonic wave equations.Symposia Matematica, 7, 85 - 96, Academic Press, New York-London, 1971. MR 0336018
Reference: [14] N. Krylová О. Vejvoda: A linear and weakly nonlinear equation of a beam: the boundary value problem for free extremities and its periodic solutions.Czech. Mat. J., 21 (1971), 535-566. MR 0289918
Reference: [15] O. Vejvoda: Periodic solutions of a weakly nonlinear wave equation in $E\sb{3}$ in a spherically symmetrical case.Apl. mat., 14 (1969), 160-167. Zbl 0175.39504, MR 0239247
Reference: [16] A. I. Plesner V. A. Rochlin: Spectral theory of linear operators. II.Uspechi mat. nauk, T. 1, Vyp. 1 (11) (1946), 71-91, (Russian). MR 0021245
Reference: [17] K. Yosida: Functional Analysis.New York 1971. Zbl 0217.16001, MR 0239384
Reference: [18] N. Bourbaki: Integrating, measures, integrating of measures.Moscow 1967, (Russian).
Reference: [19] S. G. Krein: Linear differential equations in a Banach space.Moscow 1968, (Russian). MR 0247239
Reference: [20] M. Sova: Abstract semilinear equations with small nonlinearities.CMUC, 12, 4 (1971), 785-805. Zbl 0235.47034, MR 0291912
Reference: [21] M. A. Krasnoselskii G. M. Vainikko P. P. Zabreiko, Ja. В. Rutickii V. Ja. Otecenko: Approximate solutions of operator equations.Moscow 1969, (Russian).
Reference: [22] K. Moren: Hilbert space methods.Moscow 1965, (Russian).
Reference: [23] J. Nečas: Les méthodes directes en théorie des equations elliptique.Praha 1967. MR 0227584
Reference: [24] S. Agmon: Lectures on elliptic boundary value problems.Van Nostrand, New Jersey 1965. Zbl 0142.37401, MR 0178246
Reference: [25] M. Marcus V. J. Mizel: Absolute Continuity on Tracks and Mappings of Sobolev Spaces.Arch. Rat. Mech. 45, No 4, (1972), 294-320. MR 0338765, 10.1007/BF00251378
.

Files

Files Size Format View
CzechMathJ_23-1973-4_10.pdf 3.208Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo