Previous |  Up |  Next

Article

Title: On normal semigroups (English)
Author: Kuroki, Nobuaki
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 27
Issue: 1
Year: 1977
Pages: 43-53
Summary lang: Russian
.
Category: math
.
MSC: 20M10
idZBL: Zbl 0358.20074
idMR: MR0486240
DOI: 10.21136/CMJ.1977.101444
.
Date available: 2008-06-09T14:21:36Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101444
.
Reference: [1] A. H. Clifford, G. B. Preston: The algebraic Theory of Semigroups.Vol. I, Math. Surveys No. 7, Amer. Math. Soc., Providence, R. I., (1961). Zbl 0111.03403, MR 0132791
Reference: [2] S. Lajos: Generalized ideals in semigroups.Acta Sci, Math., 22 (1961) 217-222. Zbl 0108.25904, MR 0136671
Reference: [3] S. Lajos: О Полугруппе Подмножеств Полугруппы.Publ. Math. Debrecen, 11 (1964) 223-226. Zbl 0275.60015
Reference: [4] S. Lajos: Note on $(m, n)$-ideals.II, Proc. Japan Acad., 40 (1964) 631 - 632. MR 0172949
Reference: [5] S. Lajos: On semigroups that are semilattices of groups.II, Dept. Math. K. Marx Univ. of Economics, Budapest (1971). Zbl 0242.20067, MR 0318360
Reference: [6] S. Lajos: A note on semilattices of groups.Acta Sci. Math., 33 (1972) 315 - 317. Zbl 0247.20072, MR 0318361
Reference: [7] S. Lajos: Theorems on $(1, 1)$-ideals in semigroups.Dept. Math. K. Marx Univ. of Economics, Budapest (1972). Zbl 0245.20058, MR 0338227
Reference: [8] S. Lajos: Characterizations of semilattices of groups.Math. Balkanica, 3 (1973) 310-311. Zbl 0287.20059, MR 0354914
Reference: [9] D. Latorre: On semigroups that are semilattices of groups.Czechoslovak Math. J., 21 (96) (1971) 369-370. Zbl 0225.20038, MR 0289683
Reference: [10] J. Luh: A characterization of regular rings.Proc. Japan Acad., 39 (1964) 741 - 742. MR 0161879
Reference: [11] E. C. Ляппин: Полугруппы.Москва, (1960). Zbl 1004.90500
Reference: [12] M. Petrich: Introduction to Semigroups.Bell and Howell Company (1973). Zbl 0321.20037, MR 0393206
Reference: [13] M. S. Putcha, J. Weissglass: A semilattice decomposition into semigroups having at most one idempotent.Pacific J. Math., 39 (1971) 225 - 228. Zbl 0225.20035, MR 0304523, 10.2140/pjm.1971.39.225
Reference: [14] V. S. Ramamurthi: Weakly regular rings.Canad. Math. Bull., 16 (1973) 317-321. Zbl 0241.16007, MR 0332867, 10.4153/CMB-1973-051-7
Reference: [15] S. Schwarz: A theorem on normal semigroups.Czechoslovak Math. J., 10 (85) (1960) 197-200. Zbl 0098.01704, MR 0116075
.

Files

Files Size Format View
CzechMathJ_27-1977-1_4.pdf 1.008Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo