Previous |  Up |  Next

Article

Title: Parameters of distribution of $(n+1)$-dimensional monosystems in the Euclidean space $R^{2n+1}$ (English)
Author: Thas, Charles
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 28
Issue: 1
Year: 1978
Pages: 13-24
.
Category: math
.
MSC: 53A15
idZBL: Zbl 0383.53005
idMR: MR0493779
DOI: 10.21136/CMJ.1978.101510
.
Date available: 2008-06-09T14:26:40Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101510
.
Reference: [1] Gerretsen J. C. H.: Lectures on Tensor Calculus and Differential Geometry.P. Noordhoff, Groningen, 1962, 202 pp. Zbl 0101.39001, MR 0138046
Reference: [2.1.] Granát L.: Metrické vlastnosti nerozvinutelnych monosystémû $V_n+1$ v eukleidovském prostoru $E_2n+1$.Čas. pro pěst. mat., 1966, 91, p. 412-422. MR 0208473
Reference: [2.2.] Granat L.: Metrische Eigenschaften der einparametrigen Systeme von linearen Räumen der Dimension k im Euklidischen Räum $E_n$.Čas. pro pěst. mat., 1968, 93, p. 32-45. MR 0236827
Reference: [3] Jůza M.: Ligne de striction sur une généralisation à plusieurs dimensions d'une surface réglée.Czech. Math. J., 1962, J2 (87), p. 243-250. Zbl 0116.13602, MR 0142063
Reference: [4] Kreyszig E.: Introduction to Differential Geometry and Riemannian Geometry.Univ. of Toronto press., 1968, 370 pp. Zbl 0175.48101, MR 0226507
Reference: [5] Thas C: Een (lokale) Studie van de (m + 1)-dimensionale variëteiten van de n-dimensionale euklidische ruimte $R^n (n ≥ 2m + 1 en m ≥ 1)$, beschreven door een ééndimensionale familie van m-dimensionale linéaire ruimten.Meded. Kon. Acad. Wet., Lett., Seh. K. van België, jaargang XXXVI, 1974, nr. 4, 83 pp.
Reference: [6] Vitner C: О úhlech lineárních podprostorů v $E_n$.Čas. pro pěst. mat. 87 (1962), p. 415-422. MR 0180558
.

Files

Files Size Format View
CzechMathJ_28-1978-1_3.pdf 1.242Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo