Previous |  Up |  Next

Article

Title: The hulls of semiprime rings (English)
Author: Conrad, Paul F.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 28
Issue: 1
Year: 1978
Pages: 59-86
.
Category: math
.
MSC: 16A12
MSC: 16A56
idZBL: Zbl 0396.06006
idMR: MR0463223
DOI: 10.21136/CMJ.1978.101514
.
Date available: 2008-06-09T14:26:59Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101514
.
Reference: [1] A. Abian: Direct product decomposition of commutative semisimple rings.Proc. Amer. Math. Soc. 24 (1970), 502-507. Zbl 0207.05002, MR 0258815
Reference: [2] V. Andrunakievic, M. Rjabuhin: Rings without nilpotent elements, and completely simple ideals.Soviet Math. Dokl. 9 (1968), 9-11
Reference: [3] D. Chambless: Representations of the projectable and strongly projectable hulls of a latticeordered group.Proc. Amer. Math. Soc. 34 (1972), 346-350. MR 0295990, 10.1090/S0002-9939-1972-0295990-7
Reference: [4] P. Conrad: The lateral completion of a lattice-ordered group.Proc. London Math. Soc. 19 (1969), 444-486. Zbl 0182.04803, MR 0244125, 10.1112/plms/s3-19.3.444
Reference: [5] P. Conrad: The hulls of representable l-groups and f-rings.J. Australian Math. Soc. 16 (1973), 385-415. Zbl 0275.06025, MR 0344173, 10.1017/S1446788700015391
Reference: [6] С Faith: Lectures on injective modules and quotient rings.Springer-Verlag lecture notes, 49 (1967). Zbl 0162.05002, MR 0227206
Reference: [7] C. Huijsmans: Some analogies between commutative rings.Riesz spaces and distributive lattices with smallest elements, Tndagationes Math. 36 (1974), 132 - 147. Zbl 0276.13009, MR 0354635, 10.1016/1385-7258(74)90004-3
Reference: [8] I. Kaplansky: Rings of operators.Benjamin Inc. New York, Amsterdam (1968). Zbl 0174.18503, MR 0244778
Reference: [9] J. Kist: Minimal prime ideals in commutative semigroups.Proc. London Math. S. 13 (1963), 31-50. Zbl 0108.04004, MR 0143837, 10.1112/plms/s3-13.1.31
Reference: [10] J. Kist: Two characterizations of commutative Baer rings.Pacific J. Math. 50 (1974), 125-134. Zbl 0246.13005, MR 0340233, 10.2140/pjm.1974.50.125
Reference: [11] J. Lambek: Lectures on rings and modules.Blaisdell Publ. Co., Toronto, London, and Waltham (1966). Zbl 0143.26403, MR 0206032
Reference: [12] A. Mewborn: Regular rings and Baer rings.Math. Z. 121 (1971), 211 - 219. Zbl 0215.38102, MR 0292894, 10.1007/BF01111594
Reference: [13] T. Speed: A note on commutative Baer rings.J. Australian Math. Soc. 14 (1972), 257-263. Zbl 0242.13003, MR 0318120, 10.1017/S1446788700010715
Reference: [14] T. Speed: A note on commutative Baer rings III.J. Australian Math. Soc. 15 (1973), 15-21. Zbl 0256.13006, MR 0330140, 10.1017/S1446788700012702
Reference: [15] S. Steinberg: Rings of quotients of rings without nilpotent elements.Pacific J. Math. 49 (1973), 493-501. Zbl 0246.16001, MR 0354751, 10.2140/pjm.1973.49.493
.

Files

Files Size Format View
CzechMathJ_28-1978-1_7.pdf 2.872Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo