Title:
|
Functional separation of inductive limits and representation of presheaves by sections. Part one: Separation theorems for inductive limits of closured presheaves (English) |
Author:
|
Pechanec-Drahoš, Jaroslav |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
28 |
Issue:
|
4 |
Year:
|
1978 |
Pages:
|
525-547 |
Summary lang:
|
Russian |
. |
Category:
|
math |
. |
MSC:
|
18F20 |
idZBL:
|
Zbl 0421.54012 |
idMR:
|
MR506432 |
DOI:
|
10.21136/CMJ.1978.101560 |
. |
Date available:
|
2008-06-09T14:30:25Z |
Last updated:
|
2020-07-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/101560 |
. |
Reference:
|
[1] N. Bourbaki: Elements de Mathématique.Livre III, Topologie Generale, Paris, Hermann, 1951. Zbl 0042.09201 |
Reference:
|
[2] G. E. Bredon: Sheaf Theory.McGraw-Hill, New York, 1967. Zbl 0158.20505, MR 0221500 |
Reference:
|
[3] E. Čech: Topological Spaces.Prague, 1966. MR 0211373 |
Reference:
|
[4] J. Dauns K. H. Hofmann: Representation of Rings by Sections.Mem. Amer. Math., Soc, 83 (1968). MR 0247487 |
Reference:
|
[5] J. Dugundji: Topology.Allyn and Bacon, Boston, 1966. Zbl 0144.21501, MR 0193606 |
Reference:
|
[6] Z. Frolík: Structure Projective and Structure Inductive Presheaves.Celebrazioni archimedee del secolo XX, Simposio di topologia, 1964. |
Reference:
|
[7] A. N. Gelfand D. A. Rajkov G. E. Silov: Commutative Normed Rings.Moscow, 1960 (Russian). |
Reference:
|
[8] E. Нillе, Ralph S. Phillipps: Functional Analysis and Semi-Groups.Providence, 1957. |
Reference:
|
[9] J. L. Kelley: General Topology.Van Nostrand, New York, 1955. Zbl 0066.16604, MR 0070144 |
Reference:
|
[10] G. Koethe: Topological Vector Spaces, I.New York Inc, Springer Vlg, 1969. Zbl 0179.17001 |
Reference:
|
[11] G. J. Minty: On the Extension of Lipschitz-Hölder continuous, and Monotone Functions.Bulletin of the A.M.S., 76, (1970), I. MR 0254575, 10.1090/S0002-9904-1970-12466-1 |
Reference:
|
[12] J. Pechanec-Drahoš: Representation of Presheaves of Semiuniformisable Spaces, and Representation of a Presheaf by the Presheaf of All Continuous Sections in its Covering Space.Czech. Math. Journal, 21 (96), (1971). MR 0487958 |
. |