Previous |  Up |  Next

Article

Title: On pancyclic line graphs (English)
Author: Nebeský, Ladislav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 28
Issue: 4
Year: 1978
Pages: 650-655
Summary lang: Russian
.
Category: math
.
MSC: 05C40
idZBL: Zbl 0379.05045
idMR: MR506438
DOI: 10.21136/CMJ.1978.101566
.
Date available: 2008-06-09T14:30:54Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101566
.
Reference: [1] M. Behzad, G. Chartrand: Introduction to the Theory of Graphs.Allyn and Bacon, Boston 1971. Zbl 0238.05101, MR 0432461
Reference: [2] J. A. Bondy: Pancyclic Graphs. Congressus Numeratium III.(Proceedings of the Second Louisiana Conference on Combinatorics, Graph Theory and Computing, eds. R. C. Mullin, K. B. Reid, D. P. Roselle and R. S. D. Thomas), Utilitas Mathematica Publishing Inc., Winnipeg 1972, pp. 167-172. MR 0325458
Reference: [3] G. Chartrand S. F. Kapoor, D. R. Lick: n-Hamiltonian graphs.J. Combinatorial Theory 9 (1970), 308-312. MR 0276120, 10.1016/S0021-9800(70)80069-2
Reference: [4] F. Harary: Graph Theory. : Addison-Wesley.Reading (Mass.) 1969. MR 0256911
Reference: [5] F. Harary, С. St. J. A. Nash-Williams: On eulerian and hamiltonian graphs and line graphs.Canadian Math. Bull. 8 (1965), 701-709. Zbl 0136.44704, MR 0191839, 10.4153/CMB-1965-051-3
Reference: [6] L. Nebeský: A theorem on hamiltonian line graphs.Comment. Math. Univ. Carolinae 14 (1973), 107-112. MR 0382068
.

Files

Files Size Format View
CzechMathJ_28-1978-4_9.pdf 925.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo