Previous |  Up |  Next

Article

Title: Schur complements of diagonally dominant matrices (English)
Author: Carlson, David
Author: Markham, Thomas L.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 29
Issue: 2
Year: 1979
Pages: 246-251
Summary lang: Russian
.
Category: math
.
MSC: 15A15
idZBL: Zbl 0423.15008
idMR: MR529512
DOI: 10.21136/CMJ.1979.101601
.
Date available: 2008-06-09T14:33:36Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101601
.
Reference: [1] Arthur Albert: Conditions for positive and nonnegative definiteness in terms of pseudo inverses.SIAM J. Appl. Math. 17 (1969), 434-440. MR 0245582, 10.1137/0117041
Reference: [2] David Carlson: Matrix decompositions involving the Schur complement.SIAM J. AppL Math. 28(1975), 577-587. MR 0382304, 10.1137/0128047
Reference: [3] Douglas Crabtree: Applications of $M$-matrices to nonnegative matrices.Duke Math. J., 33 (1966), 197-208. MR 0186677, 10.1215/S0012-7094-66-03324-2
Reference: [4] Douglas Crabtree, Emilie V. Haynsworth: An identity for the Schur complement of a matrix.Proc. Amer. Math. Soc. 22 (1969), 364-366. MR 0255573, 10.1090/S0002-9939-1969-0255573-1
Reference: [5] Miroslav Fiedler, Vlastimil Pták: On matrices with nonpositive off-diagonal elements and positive principal minors.Czech. Math. J. 12 (87) (1962), 382-400. MR 0142565
Reference: [6] Miroslav Fiedler, Vlastimil Pták: Diagonally dominant matrices.Czech. Math. J. 17 (92) (1967), 420-433. MR 0215869
Reference: [7] F. R. Gantmacher: The theory of matrices. Vol. I.Chelsea, New York, 1959.
Reference: [8] Emilie V. Haynsworth: Determination of the inertia of a partitioned hermitian matrix.Lin. Alg. Appl. 1 (1967), 73-82. MR 0223392, 10.1016/0024-3795(68)90050-5
Reference: [9] M. S. Lynn: On the Schur product of $H$-matrices and nonnegative matrices, and related inequalities.Proc. Camb. Phil. Soc. 60 (1964), 425 - 431. MR 0166204, 10.1017/S0305004100037932
Reference: [10] Marvin Marcus, Henryk Mine: A Survey of Matrix Theory and Matrix Inequalities.Allyn and Bacon, Boston, 1964. MR 0162808
Reference: [11] Olga Taussky: A recurring theorem on determinants.American Mathematical Monthly, 56 (1949), 672-676. MR 0032557, 10.1080/00029890.1949.11990209
.

Files

Files Size Format View
CzechMathJ_29-1979-2_9.pdf 586.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo