Previous |  Up |  Next

Article

Title: Functional separation of inductive limits and representation of presheaves by sections. Part II. Embedding of presheaves into presheaves of compact spaces (English)
Author: Pechanec-Drahoš, Jaroslav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 29
Issue: 4
Year: 1979
Pages: 514-529
Summary lang: Russian
.
Category: math
.
MSC: 18F20
MSC: 54B25
idZBL: Zbl 0411.18010
idMR: MR548214
DOI: 10.21136/CMJ.1979.101633
.
Date available: 2008-06-09T14:35:56Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101633
.
Reference: [1] N. Bourbaki: Elements de Mathématique, Livre III, Topologie Generale.Paris, Hermann, 1951.
Reference: [2] G. E. Bredon: Sheaf Theory.McGraw-Hill, New York, 1967. Zbl 0158.20505, MR 0221500
Reference: [3] E. Čech: Topological Spaces.Prague, 1966. MR 0211373
Reference: [4] J. Dauns K. H. Hofmann: Representation of Rings by Sections.Mem. Amer. Math. Soc., 83 (1968). MR 0247487
Reference: [5] J. Dugundji: Topology.Allyn and Bacon, Boston, 1966. Zbl 0144.21501, MR 0193606
Reference: [6] Z. Frolík: Structure Projective and Structure Inductive Presheaves.Celebrazioni archimedee del secolo XX, Simposio di topologia, 1964.
Reference: [7] A. N. Gelfand D. A. Rajkov G. E. Silov: Commutative Normed Rings.Moscow, 1960 (Russian).
Reference: [8] E. Hille, Ralph S. Phillipps: Functional Analysis and Semi-Groups.Providence, 1957.
Reference: [9] J. L. Kelley: General Topology.Van Nostrand, New York, 1955. Zbl 0066.16604, MR 0070144
Reference: [10] G. Koethe: Topological Vector Spaces, I.New York, Springer Vig, 1969. Zbl 0179.17001
Reference: [11] G. J. Minty: On the Extension of Lipschitz, Lipschitz - Hölder Continuous, and Monotone Functions.Bulletin of the A.M.S., 76, (1970), I. Zbl 0191.34603, MR 0254575, 10.1090/S0002-9904-1970-12466-1
Reference: [12] J. Pechanec-Drahoš: Representation of Presheaves of Semiuniformisable Spaces, and Representation of a Presheaf by the Presheaf of All Continuous Sections in its Covering Space.Czech. Math. Journal, 21 (96) (1971). MR 0487958
Reference: [13] J. Pechanec-Drahoš: Functional Separation of Inductive Limits and Representation of Presheaves by Sections, Part One, Separation Theorems for Inductive Limits of Closured Presheaves.Czech. Math. Journal, 28 (103), (1978), 525-547. MR 0506432
.

Files

Files Size Format View
CzechMathJ_29-1979-4_2.pdf 2.491Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo