Previous |  Up |  Next

Article

References:
[1] F. E. Browder: Nonlinear operators and nonlinear equations of evolution in Banach spaces. Proc. Sympos. Pure Math. vol. 18, II, 1976. MR 0405188 | Zbl 0327.47022
[2] F. E. Browder: Existence theory for boundary value problems for quasilinear elliptic systems with strong nonlinear lower order terms. in "Proceedings Symp. Pure Math." Vol. 23, pp. 269-286, Amer. Math. Soc., Providence, R.I., 1973. MR 0340815
[3] Ch. Castaing: Sur les multi-applications mesurables. Revue Inf. Rech. Op. 1 (1967), 91-126. MR 0223527 | Zbl 0153.08501
[4] S. Fučík: Note on the Fredholm alternative for nonlinear operators. Comment. Math. Univ. Carolinae, 12 (1971), 213-226. MR 0288641
[5] S. Fučík: Nonlinear equations with noninvertible linear part. Czech. Math. J. 24 (1974), 467-497. MR 0348568
[6] S. Fučík: Ranges of nonlinear operators. Vol. I-V, Lectures Notes, Charles University, Prague, 1976/77.
[7] S. Fučík M. Kučera, J. Nečas: Ranges of nonlinear asymptotically linear operators. J. Diff. Equations 17 (1975), 375-394. DOI 10.1016/0022-0396(75)90050-9 | MR 0372696
[8] A. Granas: The theory of compact vector fields. Rozprawy Matematyczne, 1962. Zbl 0111.11001
[9] P. Hess: On the Fredholm alternative for nonlinear functional equations in Banach spaces. Proc. Amer. Math. Soc., 33 (1972), 55-61. DOI 10.1090/S0002-9939-1972-0301585-9 | MR 0301585 | Zbl 0249.47064
[10] S. Hildebrandt, E. Wienholtz: Constructive proofs of representation theorems in separable Hilbert spaces. Comm. Pure and Appl. Math. 17 (1964), 369-373. DOI 10.1002/cpa.3160170309 | MR 0166608
[11] R. I. Kachurovsky: On Fredholm theory for nonlinear operator equations. Dokl. Akad. Nauk SSSR, 192 (1970), 751-754.
[12] R. I. Kachurovsky: On linear operators whose ranges are subspaces. Dokl. Akad. Nauk SSSR, 196 (1971), 168-172.
[13] T. Kato: Perturbation theory for nullity difficiency and other quantities of linear operators. J. Analyse Math. 6 (1958), 273-322. DOI 10.1007/BF02790238 | MR 0107819
[14] C. Kuratowski: Sur les espaces complets. Fund. Math. 15 (1930), 301-309.
[15] A. Lasota, Z. Opial: An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Pol. Sci., Ser. Sci. Math., astr. et phys. 13 (1965), 781-786. MR 0196178 | Zbl 0151.10703
[16] T. W. Ma: Topological degrees for set-valued compact vector fields in locally convex spaces. Dissertations Math. 92 (1972), 1-43. MR 0309103
[17] P. S. Milojevič: Multivalued mappings of $A$-proper and condensing type and boundary value problems. Ph. D. Thesis, Rutgers University, New Brunswick, N. J., May 1975.
[18] P. S. Milojevič: Some generalizations of the first Fredholm theorem to multivalued condensing and $A$-proper mappings. Bulletino Un. Math. Ital. (5) 13-B (1976), 619-633. MR 0435964
[19] P. S. Milojevič: A generalization of Leray-Schauder theorem and surjectivity results for multivalued $A$-proper and pseudo $A$-proper mappings. J. Nonlinear Anal., Theory, Methods and Appl. 1 (3) (1977), 263-276. DOI 10.1016/0362-546X(77)90035-9 | MR 0637079
[20] P. S. Milojevič: Some generalizations of the first Fredholm theorem to multivalued $A$-proper mappings with applications to nonlinear elliptic equations. J. Math. Anal. Appl. 65 (2) (1978). MR 0506319
[21] P. S. Milojevič: On the solvability and continuation type results for nonlinear equations with applications I. Proc. Third Inter. Symp. on Top. and Applic., Belgrade, 1977, 468 to 502.
[22] P. S. Milojevič: Fixed point theorems for multivalued approximable mappings. Proc. Amer. Math. Soc. 73 (1) (1979), 65-72. DOI 10.1090/S0002-9939-1979-0512060-7 | MR 0512060
[23] P. S. Milojevič, W. V. Petryshyn: Continuation theorems and the approximation - solvability of equations involving multivalued $A$-ргорег mappings. J. Math. Anal. Appl. 60 (3) (1977), 658-692. DOI 10.1016/0022-247X(77)90007-5 | MR 0454760
[24] P. S. Milojevič, W. V. Petryshyn: Continuation and surjectivity theorems for uniform limits of $А$-рrореr mappings with applications. J. Math. Anal. Appl. 62 (1978), 368-400. DOI 10.1016/0022-247X(78)90134-8 | MR 0482432
[25] G. J. Minty: Monotone (nonlinear) operators in Hilbert spaces. Duke Math. J. 29 (1962), 341-346. DOI 10.1215/S0012-7094-62-02933-2 | MR 0169064
[26] R. D. Nussbaum: The radius of the essential spectrum. Duke Math. J. 38 (1970), 473--478. MR 0264434 | Zbl 0216.41602
[27] W. V. Petryshyn: On projectional-solvability and the Fredholm alternative for equations involving linear $A$-ргорег operators. Arch. Rat. Mech. Anal. 30 (1968), 270-284. DOI 10.1007/BF00281535 | MR 0231221
[28] W. V. Petryshyn: Remarks on condensing and $k$-set-contractive mappings. J. Math. Anal. Appl. 39 (3) (1972), 717-741. DOI 10.1016/0022-247X(72)90194-1 | MR 0328687 | Zbl 0238.47041
[29] W. V. Petryshyn: Fredholm alternative for nonlinear $k$-ball contractive mappings with applications. J. Difif. Equat. 17 (1975), 82-95. DOI 10.1016/0022-0396(75)90036-4 | MR 0355713 | Zbl 0292.47057
[30] W. V. Petryshyn: Fredholm alternative for nonlinear $A$-ргорег mappings with applications to nonlinear elliptic value problems. J. Funct. Anal. 18 (1975), 288-317. DOI 10.1016/0022-1236(75)90018-X | MR 0361963
[31] W. V. Petryshyn: On the approximation-solvability of equations involving $A$-proper and pseudo $A$-proper mappings. Bull. Amer. Math. Soc. 81 (2) (1975), 223-312. DOI 10.1090/S0002-9904-1975-13728-1 | MR 0388173 | Zbl 0303.47038
[32] W. V. Petryshyn: Note on the solvability of equations involving unbounded linear and quasibounded nonlinear operators. J. Math. Anal. Appl. 56 (1976), 495-501. DOI 10.1016/0022-247X(76)90021-4 | MR 0430888 | Zbl 0352.47029
[33] W. V. Petryshyn, P. M. Fitzpatrick: A degree theory, fixed point theorems and mapping theorems for multivalued and noncompact mappings. Trans. Amer. Math. Soc. 194 (1974), 1-25. DOI 10.1090/S0002-9947-1974-2478129-5 | MR 2478129
[34] W. V. Petryshyn, P. M. Fitzpatrick: On 1-set and -ball contractions with application to perturbation problems for nonlinear bijective maps and linear Fredholm maps. Bulletino Un. Math. Ital. (4) 7 (1973), 102-124. MR 0343114
[35] В. N. Sadovskii: Ultimately compact and condensing mappings. Uspehi Mat. Nauk, 27 (1972), 81-146. MR 0428132
[36] С. A. Stuart: Some bifurcation theory for $k$-set contractions. Proc. London Math. Soc. (3) 27 (1973), 531-550. MR 0333856 | Zbl 0268.47064
[37] J. F. Toland: Global bifurcation theory via Galerkin method. J. Nonlinear Anal., Theory, Methods, Appl. 1 (3) (1977), 305-317. MR 0516195
[38] A. Vignoli: On quasibounded mappings and nonlinear functional equations. Atti Acad. Naz. Lincei Rendi. cl. sci. Fiz. Mat. Natur. (8) 50 (1971), 114-117. MR 0303379 | Zbl 0254.47089
[39] J. R. L. Webb: On a characterization of $k$-set contractions. Accad. Naz. Lincei. 8 (1971), 358-361. MR 0306991
[40] J. R. L. Webb: On degree theory for multivalued mappings and applications. Bulletino Un. Mat. Ital. (4) 9 (1974), 137-158. MR 0367740 | Zbl 0293.47021
[41] F. Wille: On motone operators with perturbations. Arch. Rational Mech. Anal. 46 (1972), 269-388.
Partner of
EuDML logo